scholarly journals PARTICIPATION OF THE BLUE LIGHT SIGNALING COMPONENTS IN THE REGULATION OF GENE EXPRESSION OF THE PLASTOME TRANSCRIPTION APPARATUS DURING CYTOKININ-DEPENDENT DE-ETIOLATION OF A. THALIANA

Author(s):  
A.S. Doroshenko ◽  
M.N. Danilova
2003 ◽  
Vol 358 (1429) ◽  
pp. 147-154 ◽  
Author(s):  
Carl Bauer ◽  
Sylvie Elsen ◽  
Lee R. Swem ◽  
Danielle L. Swem ◽  
Shinji Masuda

All photosynthetic organisms control expression of photosynthesis genes in response to alterations in light intensity as well as to changes in cellular redox potential. Light regulation in plants involves a well–defined set of red– and blue–light absorbing photoreceptors called phytochrome and cryptochrome. Less understood are the factors that control synthesis of the plant photosystem in response to changes in cellular redox. Among a diverse set of photosynthetic bacteria the best understood regulatory systems are those synthesized by the photosynthetic bacterium Rhodobacter capsulatus . This species uses the global two–component signal transduction cascade, RegB and RegA, to anaerobically de–repress anaerobic gene expression. Under reducing conditions, the phosphate on RegB is transferred to RegA, which then activates genes involved in photosynthesis, nitrogen fixation, carbon fixation, respiration and electron transport. In the presence of oxygen, there is a second regulator known as CrtJ, which is responsible for repressing photosynthesis gene expression. CrtJ responds to redox by forming an intramolecular disulphide bond under oxidizing, but not reducing, growth conditions. The presence of the disulphide bond stimulates DNA binding activity of the repressor. There is also a flavoprotein that functions as a blue–light absorbing anti–repressor of CrtJ in the related bacterial species Rhodobacter sphaeroides called AppA. AppA exhibits a novel long–lived photocycle that is initiated by blue–light absorption by the flavin. Once excited, AppA binds to CrtJ thereby inhibiting the repressor activity of CrtJ. Various mechanistic aspects of this photocycle will be discussed.


Genes ◽  
2018 ◽  
Vol 10 (1) ◽  
pp. 2 ◽  
Author(s):  
María José de Leone ◽  
Carlos Esteban Hernando ◽  
Andrés Romanowski ◽  
Mariano García-Hourquet ◽  
Daniel Careno ◽  
...  

Light signaling pathways interact with the circadian clock to help organisms synchronize physiological and developmental processes to periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Members of the family of NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED (LNK) genes play key roles linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. Particularly, LNK1 and LNK2 were shown to control circadian rhythms, photomorphogenic responses, and photoperiod-dependent flowering time. Here we analyze the role of the four members of the LNK family in Arabidopsis in these processes. We found that depletion of the closely related LNK3 and LNK4 in a lnk1;lnk2 mutant background affects circadian rhythms, but not other clock-regulated processes such as flowering time and seedling photomorphogenesis. Nevertheless, plants defective in all LNK genes (lnkQ quadruple mutants) display developmental alterations that lead to increased rosette size, biomass, and enhanced phototropic responses. Our work indicates that members of the LNK family have both distinctive and partially overlapping functions, and are an essential link to orchestrate light-regulated developmental processes.


2020 ◽  
Vol 477 (16) ◽  
pp. 3091-3104 ◽  
Author(s):  
Luciana E. Giono ◽  
Alberto R. Kornblihtt

Gene expression is an intricately regulated process that is at the basis of cell differentiation, the maintenance of cell identity and the cellular responses to environmental changes. Alternative splicing, the process by which multiple functionally distinct transcripts are generated from a single gene, is one of the main mechanisms that contribute to expand the coding capacity of genomes and help explain the level of complexity achieved by higher organisms. Eukaryotic transcription is subject to multiple layers of regulation both intrinsic — such as promoter structure — and dynamic, allowing the cell to respond to internal and external signals. Similarly, alternative splicing choices are affected by all of these aspects, mainly through the regulation of transcription elongation, making it a regulatory knob on a par with the regulation of gene expression levels. This review aims to recapitulate some of the history and stepping-stones that led to the paradigms held today about transcription and splicing regulation, with major focus on transcription elongation and its effect on alternative splicing.


Sign in / Sign up

Export Citation Format

Share Document