scholarly journals Pseudo-spin Symmetry in Dirac-Four-Parameter Diatomic Problem Coupled with a Coulomb-like Tensor potential

BIBECHANA ◽  
2012 ◽  
Vol 8 ◽  
pp. 23-30
Author(s):  
Mahdi Eshghi

In this work, we use the parametric generalization of the Nikiforov-Uvarov method to obtain the relativistic bound state energy spectrum and the corresponding spinor wave-functions for four-parameter diatomic potential coupled with a Coulomb-like tensor under the condition of the pseudo-spin symmetry. Also, some numerical results have given.Keywords: Dirac equation; four-parameter diatomic potential; Coulomb-like tensorDOI: http://dx.doi.org/10.3126/bibechana.v8i0.4879BIBECHANA 8 (2012) 23-30

2010 ◽  
Vol 25 (33) ◽  
pp. 2849-2857 ◽  
Author(s):  
GUO-HUA SUN ◽  
SHI-HAI DONG

In this work we solve the Dirac equation by constructing the exact bound state solutions for a mixing of scalar and vector spherically asymmetrical singular oscillators. This is done provided that the vector potential is equal to the scalar potential. The spinor wave functions and bound state energy levels are presented. The case V(r) = -S(r) is also considered.


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


2017 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Ihtiari Prasetyaningrum ◽  
C Cari ◽  
A Suparmi

<p class="Abstract">The energy eigenvalues and eigenfunctions of Dirac equation for Rosen Morse plus Rosen Morse potential are investigated numerically in terms of finite Romanovsky Polynomial. The bound state energy eigenvalues are given in a closed form and corresponding eigenfunctions are obtained in terms of Romanovski polynomials. The energi eigen value is solved by numerical method with Matlab 2011.</p>


2010 ◽  
Vol 19 (11) ◽  
pp. 2189-2197 ◽  
Author(s):  
M. HAMZAVI ◽  
H. HASSANABADI ◽  
A. A. RAJABI

We investigate the exact solution of the Dirac equation for the Hartmann potential. The radial and polar parts of the Dirac equation are solved by Nikiforov–Uvarov method. The bound state energy eigenvalues and the corresponding two-component spinor wave functions of the Dirac particles are obtained.


2011 ◽  
Vol 3 (3) ◽  
pp. 493-500 ◽  
Author(s):  
M. Eshghi

We study the relativistic equation of spin-1/2 particles under the hyperbolic potential and a Coulomb-like tensor potential. By using the generalized parametric of the Nikiforov-Uvarov method and the pseudo-spin symmetry, we obtain the energy eigenvalues equation and the corresponding unnormalized wave functions. Some numerical results are given, too.Keywords: Dirac equation; Tensor potential; Pseudo-spin symmetry; Nikiforov-Uvarov.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserveddoi:10.3329/jsr.v3i3.8071               J. Sci. Res. 3 (3), 503-510 (2011


2011 ◽  
Vol 3 (3) ◽  
pp. 501-513 ◽  
Author(s):  
R. Nasrin

We study the relativistic equation of spin-1/2 particles under the hyperbolic potential and a Coulomb-like tensor potential. By using the generalized parametric of the Nikiforov-Uvarov method and the pseudo-spin symmetry, we obtain the energy eigenvalues equation and the corresponding unnormalized wave functions. Some numerical results are given, too.Keywords: Dirac equation; Tensor potential; Pseudo-spin symmetry; Nikiforov-Uvarov.© 2011 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserveddoi:10.3329/jsr.v3i3.8071               J. Sci. Res. 3 (3), 503-510 (2011)


2018 ◽  
Vol 33 (33) ◽  
pp. 1850195
Author(s):  
Amornthep Tita ◽  
Pichet Vanichchapongjaroen

In this paper, a one-parameter family of Newton’s equivalent Hamiltonians (NEH) for finite square well potential is analyzed in order to obtain bound state energy spectrum and wave functions. For a generic potential, each of the NEH is classically equivalent to one another and to the standard Hamiltonian yielding Newton’s equations. Quantum mechanically, however, they are expected to be different from each other. The Schrödinger’s equation coming from each NEH with finite square well potential is an infinite order differential equation. The matching conditions, therefore, demand the wave functions to be infinitely differentiable at the well boundaries. To handle this, we provide a way to consistently truncate these conditions. It turns out as expected that bound state energy spectrum and wave functions are dependent on the parameter [Formula: see text] which is used to characterize different NEH. As [Formula: see text], the energy spectrum coincides with that from the standard quantum finite square well.


2012 ◽  
Vol 27 (30) ◽  
pp. 1250171 ◽  
Author(s):  
ALTUĞ ARDA ◽  
RAMAZAN SEVER

Exact bound state solutions of the Dirac equation for the Kratzer potential in the presence of a tensor potential are studied by using the Laplace transform approach for the cases of spin- and pseudo-spin symmetry. The energy spectrum is obtained in the closed form for the relativistic as well as non-relativistic cases including the Coulomb potential. It is seen that our analytical results are in agreement with the ones given in the literature. The numerical results are also given in a table for different parameter values.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
A. N. Ikot ◽  
H. Hassanabadi ◽  
E. Maghsoodi ◽  
S. Zarrinkamar

Spin and pseudospin symmetries of the Dirac equation for a Hulthén potential with a novel tensor interaction, that is, a combination of the Coulomb and Yukawa potentials, are investigated using the Nikiforov-Uvarov method. The bound-state energy spectra and the radial wave functions are approximately obtained in the case of spin and pseudospin symmetries. The tensor interactions and the degeneracy-removing role are presented in details.


2010 ◽  
Vol 25 (21) ◽  
pp. 4067-4079 ◽  
Author(s):  
OKTAY AYDOĞDU ◽  
RAMAZAN SEVER

We obtain the bound state energy eigenvalues and the corresponding wave functions of the Dirac particle for the generalized Hulthén potential plus a ring-shaped potential with pseudospin and spin symmetry. The Nikiforov–Uvarov method is used in the calculations. Contribution of the angle-dependent part of the potential to the relativistic energy spectra are investigated. In addition, it is shown that the obtained results coincide with those available in the literature.


Sign in / Sign up

Export Citation Format

Share Document