scholarly journals Renewed tectonic extrusion of high-grade metamorphic rocks in the MCT footwall since Late Miocene (Sutlej Valley, India)

2008 ◽  
Vol 2 (4) ◽  
pp. 102-103 ◽  
Author(s):  
Vincent Baudraz ◽  
Jean-Claude Vannay ◽  
Elizabeth Catlos ◽  
Mike Cosca ◽  
Torsten Vennemann

Himalayan Journal of Sciences Vol.2(4) Special Issue 2004 pp. 102-3

2011 ◽  
Vol 186 (2) ◽  
pp. 551-566 ◽  
Author(s):  
Rachida El Bay ◽  
Erwin Appel ◽  
Lalu Paudel ◽  
Udo Neumann ◽  
Fabian Setzer

2014 ◽  
Vol 82 ◽  
pp. 151-162 ◽  
Author(s):  
Michael Bröcker ◽  
Gholamreza Fotoohi Rad ◽  
Fateme Abbaslu ◽  
Nikolay Rodionov

1993 ◽  
Vol 5 (2) ◽  
pp. 193-206 ◽  
Author(s):  
P. D. Kinny ◽  
L. P. Black ◽  
J. W. Sheraton

The application of zircon U-Pb geochronology using the SHRIMP ion microprobe to the Precambrian high-grade metamorphic rocks of the Rauer Islands on the Prydz Bay coast of East Antarctica, has resulted in major revisions to the interpreted geological history. Large tracts of granitic orthogneisses, previously considered to be mostly Proterozoic in age, are shown here to be Archaean, with crystallization ages of 3270 Ma and 2800 Ma. These rocks and associated granulite-facies mafic rocks and paragneisses account for up to 50% of exposures in the Rauer Islands. Unlike the 2500 Ma rocks in the nearby Vestfold Hills which were cratonized soon after formation, the Rauer Islands rocks were reworked at about 1000 Ma under granulite to amphibolite facies conditions, and mixed with newly generated felsic crust. Dating of components of this felsic intrusive suite indicates that this Proterozoic reworking was accomplished in about 30–40 million years. Low-grade retrogression at 500 Ma was accompanied by brittle shearing, pegmatite injection, partial resetting of U-Pb geochronometers and growth of new zircons. Minor underformed lamprophyre dykes intruded Hop and nearby islands later in the Phanerozoic. Thus, the geology of the Rauer Islands reflects reworking and juxtaposition of unrelated rocks in a Proterozoic orogenic belt, and illustrates the important influence of relatively low-grade fluid-rock interaction on zircon U-Pb systematics in high-grade terranes.


2011 ◽  
Vol 48 (2) ◽  
pp. 205-245 ◽  
Author(s):  
L. M. Heaman ◽  
Ch. O. Böhm ◽  
N. Machado ◽  
T. E. Krogh ◽  
W. Weber ◽  
...  

The Pikwitonei Granulite Domain located at the northwestern margin of the Superior Province is one of the largest Neoarchean high-grade terranes in the world, with well-preserved granulite metamorphic assemblages preserved in a variety of lithologies, including enderbite, opdalite, charnockite, and mafic granulite. U–Pb geochronology has been attempted to unravel the protolith ages and metamorphic history of numerous lithologies at three main localities; Natawahunan Lake, Sipiwesk Lake, and Cauchon Lake. The U–Pb age results indicate that some of the layered enderbite gneisses are Mesoarchean (3.4–3.0 Ga) and the more massive enderbites are Neoarchean. The high-grade metamorphic history of the Pikwitonei Granulite Domain is complex and multistage with at least four episodes of metamorphic zircon growth identified: (1) 2716.1 ± 3.8 Ma, (2) 2694.6 ± 0.6 Ma, (3) 2679.6 ± 0.9 Ma, and (4) 2642.5 ± 0.9 Ma. Metamorphic zircon growth during episodes 2 and 3 are interpreted to be regional in extent, corresponding to M1 amphibolite- and M2 granulite-facies events, respectively, consistent with previous field observations. The youngest metamorphic episode at 2642.5 Ma is only recognized at southern Cauchon Lake, where it coincides with granite melt production and possible development of a major northeast-trending deformation zone. The timing and multistage metamorphic history recorded in the Pikwitonei Granulite Domain is similar to most Superior Province high-grade terranes and marks a fundamental break in Archean crustal evolution worldwide at the termination of prolific global Neoarchean greenstone belt formation.


1970 ◽  
Vol 9 (5) ◽  
pp. 416-420 ◽  
Author(s):  
K.S. Heier ◽  
A.O. Brunfelt
Keyword(s):  

Author(s):  
Monika A. Kusiak ◽  
Simon A. Wilde ◽  
Richard Wirth ◽  
Martin J. Whitehouse ◽  
Daniel J. Dunkley ◽  
...  

Cells ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 2216
Author(s):  
Sergio Comincini

Human astrocytic tumors are primary central nervous system (CNS) tumors that arise either from astrocytes or from precursor cells. A growing number of epidemiological and incidence studies in different countries underlined that, in addition to increasing economic costs for health systems, these cancers are still representing one of the main hurdles in developing a successful therapeutic goal for patients. On the other hand, new-omics technologies are offering customized instruments and more and more advantageous results toward personalized medicine approaches, underlining the concept that each tumor mass undergoes a peculiar transformation process under the control of specific genes’ and proteins’ functional signatures. The main aim of this Special Issue was to collect novel contributions in the wide field of human tumor astrocytic basic and translational research, to suggest further potential therapeutic targets/strategies that might interfere, possibly at the earliest stage of transformation, with the tumor progression, and to increase the molecular-based arsenal to counteract the prognostic poverty of high-grade astrocytic tumors.


Sign in / Sign up

Export Citation Format

Share Document