Analytical Solution for Advection-Dispersion Equation of the Pollutant Concentration using Laplace Transformation

2021 ◽  
Vol 4 (1) ◽  
pp. 33-40
Author(s):  
Keshav Paudel ◽  
Prem Sagar Bhandari ◽  
Jeevan Kafle

We present simple analytical solution for the unsteady advection-dispersion equation describing the pollutant concentration C(x; t) in one dimension. In this model the water velocity in the x-direction is taken as a linear function of x and dispersion coefficient D as zero. In this paper by taking k = 0, k is the half saturated oxygen demand concentration for pollutant decay, we can apply the Laplace transformation and obtain the solution. The variation of C(x; t) with different times t upto t → ∞ (the steady state case) is taken into account advection-dispersion equation in our study.

2021 ◽  
Author(s):  
Thomas TJOCK-MBAGA ◽  
Patrice Ele Abiama ◽  
Jean Marie Ema'a Ema'a ◽  
Germain Hubert Ben-Bolie

Abstract This study derives an analytical solution of a one-dimensional (1D) advection-dispersion equation (ADE) for solute transport with two contaminant sources that takes into account the source term. For a heterogeneous medium, groundwater velocity is considered as a linear function while the dispersion as a nth-power of linear function of space and analytical solutions are obtained for and . The solution in a heterogeneous finite domain with unsteady coefficients is obtained using the Generalized Integral Transform Technique (GITT) with a new regular Sturm-Liouville Problem (SLP). The solutions are validated with the numerical solutions obtained using MATLAB pedpe solver and the existing solution from the proposed solutions. We exanimated the influence of the source term, the heterogeneity parameters and the unsteady coefficient on the solute concentration distribution. The results show that the source term produces a solute build-up while the heterogeneity level decreases the concentration level in the medium. As an illustration, model predictions are used to estimate the time histories of the radiological doses of uranium at different distances from the sources boundary in order to understand the potential radiological impact on the general public.


2017 ◽  
Vol 143 (11) ◽  
pp. 04017126 ◽  
Author(s):  
Vinod Kumar Bharati ◽  
Vijay P. Singh ◽  
Abhishek Sanskrityayn ◽  
Naveen Kumar

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Abdon Atangana ◽  
S. C. Oukouomi Noutchie

The contamination through the geological formation cannot move and disperse with the same speed and dispersion coefficient, respectively, due to the variability of the geological formation. This paper is therefore first devoted to the description of the hydrodynamic advection dispersion equation with the seepage velocity and dispersion coefficient as function of space and time. Secondly the equation is solved via two analytical techniques: the homotopy decomposition method and the differential transform method. The numerical simulations of the approximated solutions are presented.


2010 ◽  
Vol 23 (4) ◽  
pp. 521-539 ◽  
Author(s):  
R. R. YADAV ◽  
DILIP KUMAR JAISWAL ◽  
HAREESH KUMAR YADAV ◽  
GUL RANA

2016 ◽  
Vol 17 (3) ◽  
pp. 825-834 ◽  
Author(s):  
Abbas Parsaie ◽  
Amir Hamzeh Haghiabi

Modeling pollution transmission in rivers is an important subject in environmental engineering studies. Numerical approaches to modeling pollution transmission in rivers are useful tools for managing the water quality. The advection-dispersion equation is the governing equation in the transport of pollution in rivers. Recently, due to advances in fractional calculus in engineering modeling, the simulation of pollution transmission in rivers has been improved using the fractional derivative approach. In this study, by solving the fractional advection-dispersion equation (FRADE), a numerical model was developed for the simulation of pollution transmission in rivers with stagnant zones. To this purpose, both terms of the FRADE equation (advection and fractional dispersion) were discretized separately and the results were connected using a time-splitting technique. The analytical solution of a modified advection-dispersion equation (MADE) model and observed data from the Severn River in the UK were used to demonstrate the model capabilities. Results indicated that there is a good agreement between observed data, the analytical solution of the MADE model, and the results of the developed numerical model. The developed numerical model can accurately simulate the long-tailed dispersion processes in a natural river.


2021 ◽  
Vol 13 (14) ◽  
pp. 7796
Author(s):  
Abhishek Sanskrityayn ◽  
Heejun Suk ◽  
Jui-Sheng Chen ◽  
Eungyu Park

Demand has increased for analytical solutions to determine the velocities and dispersion coefficients that describe solute transport with spatial, temporal, or spatiotemporal variations encountered in the field. However, few analytical solutions have considered spatially, temporally, or spatiotemporally dependent dispersion coefficients and velocities. The proposed solutions consider eight cases of dispersion coefficients and velocities: both spatially dependent, both spatiotemporally dependent, both temporally dependent, spatiotemporally dependent dispersion coefficient with spatially dependent velocity, temporally dependent dispersion coefficient with constant velocity, both constant, spatially dependent dispersion coefficient with spatiotemporally dependent velocity, and constant dispersion coefficient with temporally dependent velocity. The spatial dependence is linear, while the temporal dependence may be exponential, asymptotical, or sinusoidal. An advection–dispersion equation with these variable coefficients was reduced to a non-homogeneous diffusion equation using the pertinent coordinate transform method. Then, solutions were obtained in an infinite medium using Green’s function. The proposed analytical solutions were validated against existing analytical solutions or against numerical solutions when analytical solutions were unavailable. In this study, we showed that the proposed analytical solutions could be applied for various spatiotemporal patterns of both velocity and the dispersion coefficient, shedding light on feasibility of the proposed solution under highly transient flow in heterogeneous porous medium.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
M. Massabó ◽  
R. Cianci ◽  
O. Paladino

We study a uniform flow in a parallel plate geometry to model contaminant transport through a saturated porous medium in a semi-infinite domain in order to simulate an experimental apparatus mainly constituted by a chamber filled with a glass beads bed. The general solution of the advection dispersion equation in a porous medium was obtained by utilizing the Jacobiθ3Function. The analytical solution here presented has been provided when the inlet (Dirac) and the boundary conditions (Dirichelet, Neumann, and mixed types) are fixed. The proposed solution was used to study experimental data acquired by using a noninvasive technique.


Sign in / Sign up

Export Citation Format

Share Document