Improving Tribological Behavior of ICE’s Cylinder Surface by Laser Surface Texturing (LST)

2021 ◽  
Vol 7 (2) ◽  
pp. 9-16
Author(s):  
K. Tripathi ◽  
S. W. Lee

This study investigates the effect of laser surface texturing (LST) on the friction and wear behavior of grey cast iron (GCI) of internal combustion engine (ICE) cylinder in lubricated conditions. The dimples having diameter of about (58-60) μm and depth of about 10 μm were created on the surface with various dimple densities ranging from 5 to 50%. A ball-on-disc friction tests were performed for all the specimens under 5W30 and 15W50 oils with different viscosities. The tests were carried out at a load of 5N and speed of 5cm/s. The coefficient of friction of the dimpled specimen was reduced significantly by approximately 32% as compared to the polished speciemen. Specimen with 15% dimples exhibits the lowest coefficient of friction of all the dimpled specimens in both low and high viscous oils. The high viscous oil found to be more efficient regarding coefficeint of friction compared to the low viscous oil. The degree of wear of the specimens was analyzed on the basis of wear scar developed on the counter surface as it supplements the wear during the friction tests. The resistance to wear of the sliding specimens was found to be increased in high viscous oil compared to that in low viscous oil.

2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Khagendra Tripathi ◽  
Bhupendra Joshi ◽  
Gobinda Gyawali ◽  
Auezhan Amanov ◽  
Soo Wohn Lee

Dimples with various pitches and densities were produced using laser surface texturing (LST) to improve the friction and wear behavior of graphite cast iron. The objective of this study is to investigate the effectiveness of dimples on the friction and wear behavior of an internal combustion engine (ICE) cylinder. The specimens with a dimple pitch of 150 μm and a dimple density of 13% exhibited the lowest friction coefficient among the specimens, while the specimens with a dimple pitch of 200 μm and a density of 7% exhibited the highest resistance to wear.


2015 ◽  
Vol 92 ◽  
pp. 136-145 ◽  
Author(s):  
Qichun Sun ◽  
Tianchang Hu ◽  
Hengzhong Fan ◽  
Yongsheng Zhang ◽  
Litian Hu

2021 ◽  
Vol 111 (01-02) ◽  
pp. 65-70
Author(s):  
Michael Stroka ◽  
Sascha Stribick ◽  
Moritz Kolb

Der Beitrag beschreibt, wie Verbundkreissägeblätter mit geklebten keramischen Zähnen hergestellt wurden. Dafür wurden die Keramiken, aufbauend auf bisherigen eigenen Untersuchungen, mittels Laseroberflächenstrukturierung vorbehandelt und mit einem modifizierten Lötautomaten verklebt. Anschließend wurden die Werkzeuge geschliffen und in einem Modellversuch auf ihre Funktionsfähigkeit und Einsatzverhalten untersucht.   This article presents the manufacturing of adhesively bonded circular saw blades with ceramic teeth. Based on own previous investigations, the ceramic surfaces were treated by laser surface texturing and adhesively bonded by a modified brazing machine. Then the tools were grinded and functioning and behavior were validated in a model experiment.


2019 ◽  
Vol 71 (6) ◽  
pp. 842-850
Author(s):  
Peter Prakash F. ◽  
Muthukannan Duraiselvam ◽  
Natarajan S. ◽  
Kannan Ganesa Balamurugan

Purpose This paper aims to investigate the effect of laser surface texturing (LST) on the wear behavior of C-263 nickel-based superalloy and to identify the optimum wear operating condition. Design/methodology/approach C-263 nickel-based superalloy was selected as substrate material and pico-second Nd-YAG laser was used to fabricate the waviness groove texture on their surface. Wear experiments were designed based on Box-Bhenken design with three factors of sliding velocity, sliding distance and applied load. Wear experiments were performed using pin on disc tribometer. Morphologies of textures and worn-out surfaces were evaluated by scanning electron microscopy and energy dispersive spectroscopy. Surface topographies and surface roughness of the textures were evaluated by weight light interferometry. The response surface methodology was adopted to identify the optimum wear operating condition and ANOVA to identify the significant factors. Findings LST improves the wear resistance of C-263 nickel-based superalloy by appeoximately 82 per cent. Higher wear rate occurs at maximum values of all operating conditions, and applied load affects the coefficient of friction. Applied load significantly affects the wear rate of un-textured specimen. The interaction of sliding velocity and applied load also affects the wear rate of textured specimens. The optimum parameters to get minimum wear rate for un-textured specimens are 1.5 m/s sliding velocity, 725 m sliding distance and 31 N of applied load. For textured specimens, the optimum values are 1.5 m/s sliding distance, 500 m sliding distance and 40 N of the applied load. Originality/value Literature on laser texturing on nickel-based superalloy is very scarce. Specifically, the effect of laser texturing on wear behavior of the nickel-based superalloy C-263 alloy is not yet reported.


Sign in / Sign up

Export Citation Format

Share Document