scholarly journals Potential Use of GPS Technology For Cadastral Surveys in Nepal

2013 ◽  
Vol 12 ◽  
pp. 33-40
Author(s):  
Rabindra Man Tamrakar

Global Positional Systems (GPS) now is competing with traditional surveying techniques in almost all fields of geodesy and cadastral surveying after the availability of highly productive new systems such as Real Time Kinematic (RTK) systems along with the use of Global Navigation Satellite Systems (GNSS). Although the cadastral mapping of the entire Nepal was completed in 1996 using graphical survey with plane table technique, derived information from the existing maps now are outdated and do not fulfil the needs of the general public. Updating cadastral maps is not only necessary but vital in Nepal. Survey Department under the Ministry of Land Reforms & Management, Government of Nepal now has to adopt an appropriate innovative approach for cadastral mapping in the country in order to meet the growing public demands on reliable land information system, to provide speedy land administrative services as well as for overall development of the country. With continual research and development into GPS, the techniques and systems developed have become more reliable, cheaper and more productive, making GPS more attractive for a range of surveying solutions including cadastral mapping. Though high resources may be initially required for the RTK GPS technology for cadastral surveys in Nepal when compared to presently available optical surveying techniques, it would be justifiable in investing in GPS surveys. This technology, however, will not replace the existing survey techniques but it will provide another means in carrying out cadastral surveys especially in the area where the conventional technique is not economically and temporally viable. Nepalese Journal on Geoinformatics -12, 2070 (2013AD): 33-40

2019 ◽  
Vol 19 (1) ◽  
pp. 1-8
Author(s):  
S. Mantey

Cadastral surveys in Ghana often employ well known surveying equipment such as Total Station andGNSSreceivers or a combination of both. These survey techniques are well-established and widely accepted. However, there are limitations in certain areas. In situations where difficult terrain and inaccessible areas and dense vegetation are encountered or when surveyor’s life may be at risk, Unmanned Aerial Vehicles (UAVs) could be used to overcome the limitations of these well-established survey instruments. This research used high resolution images from UAV (DJI Phantom 4) to survey plots within the University of Mines and Technology land area. Coordinates of the boundary points were extracted using Agisoft Photoscan.GNSSreceivers were also used to survey the land and the same boundary point coordinates obtained and compared. This enabled the establishment of accurate ground control points for georeferencing. The coordinates obtained from both UAV andGNSSSurveys were used to prepare cadastral plans and compared. The difference in Northings and Eastings from UAV andGNSSsurveys were +0.380 cmand +0.351 cmrespectively. These differences are well within tolerance of +/-0.9114 m(+/-3 ft) set by the Survey and Mapping Division (SMD) of the Lands Commission for cadastral plans production. This research therefore concludes that high resolution images from UAVs are suitable for cadastral surveying. Keywords: Unmanned Aerial Vehicles, Drones, Global Navigation Satellite Systems, Cadastral Surveys


2016 ◽  
Vol 12 (24) ◽  
pp. 33
Author(s):  
Martina Szabova ◽  
Frantisek Duchon

The use of satellite positioning systems to determine position in reference frame can introduce serious practical difficulties. The problem can be in the fields of navigation, map revision or cadastral surveying. It arises because in local area the local coordinate system were used. The problem can be solved by transformation between coordinates frame. Global navigation satellite systems (GNSS) don’t use same reference frame and it is important to know transformation between this systems. This paper works with information of many international organizations and their documents. It contains information about reference coordinate system of GNSS, information about local coordinates system used in North America, UK, and Europe.


2019 ◽  
Vol 7 (2) ◽  
pp. 169-177 ◽  
Author(s):  
Austin Chad Hill ◽  
Fred Limp ◽  
Jesse Casana ◽  
Elise Jakoby Laugier ◽  
Malcolm Williamson

AbstractArchaeologists have long recognized that precise three-dimensional coordinates are critical for recording objects and features across sites and landscapes. Traditionally, for relatively small areas, an optical transit or, more recently, an electronic distance measurement device (EDM) has been used to acquire these three-dimensional points. While effective, such systems have significant limitations in that they require a clear line of site. Real-time kinematic (RTK) GPS/GNSS systems (Global Positioning System/Global Navigation Satellite Systems) have been available for well over a decade, and can provide quick and accurate point measurements over a wide area without many of the limitation of older technologies. The cost of such systems, however, has generally been prohibitive for archaeologists, and so their use has been rare. Recently, a new generation of low-cost systems has become available, making this technology more accessible to a wider user base. This article describes the use, accuracy, and limitations of one such low-cost system, the Emlid Reach RS, to show why this is an important tool for archaeological fieldwork.


Author(s):  
M. O. Ehigiator

Geophysical investigation was conducted at Okada community in ovia North Local Govertment area of Edo state to determine the prospect of aquifer zone. The Petrozenith PZ-02 Terrameter, one of the Electrical Resistivity Equipment was used to conduct a Vertical Electrical Sounding (VES) in the study area. The Garmin Etrex 10 Global Navigation satellite systems (GNSS) was used to acquire Geodetic coordinates of point where VES observations were made. This research was carried out as a pre-drilling Hydro-geophysical survey conducted for the purpose of surveying and studying the proposed water borehole site at Okada Community that has suffered acute water problems for a very long time. There have been series of boreholes drilled in the studied area but all are dry wells. This survey was conducted to investigate the subsurface complexity of the sites in respect of lithology and to recommend the total drill depth based on the prospective aquifer unit so identified. Result of interpretation suggests that the area is underlain with substantive aquiferous formation but at a depth not exceeding 121.60 m (398.95 ft), which is the lower aquifer unit. The value of elevation at point of observation referenced to mean sea level is 94 m.


2021 ◽  
Vol 95 (2) ◽  
Author(s):  
Mirjam Bilker-Koivula ◽  
Jaakko Mäkinen ◽  
Hannu Ruotsalainen ◽  
Jyri Näränen ◽  
Timo Saari

AbstractPostglacial rebound in Fennoscandia causes striking trends in gravity measurements of the area. We present time series of absolute gravity data collected between 1976 and 2019 on 12 stations in Finland with different types of instruments. First, we determine the trends at each station and analyse the effect of the instrument types. We estimate, for example, an offset of 6.8 μgal for the JILAg-5 instrument with respect to the FG5-type instruments. Applying the offsets in the trend analysis strengthens the trends being in good agreement with the NKG2016LU_gdot model of gravity change. Trends of seven stations were found robust and were used to analyse the stabilization of the trends in time and to determine the relationship between gravity change rates and land uplift rates as measured with global navigation satellite systems (GNSS) as well as from the NKG2016LU_abs land uplift model. Trends calculated from combined and offset-corrected measurements of JILAg-5- and FG5-type instruments stabilized in 15 to 20 years and at some stations even faster. The trends of FG5-type instrument data alone stabilized generally within 10 years. The ratio between gravity change rates and vertical rates from different data sets yields values between − 0.206 ± 0.017 and − 0.227 ± 0.024 µGal/mm and axis intercept values between 0.248 ± 0.089 and 0.335 ± 0.136 µGal/yr. These values are larger than previous estimates for Fennoscandia.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Matthias Gilgien ◽  
Philip Crivelli ◽  
Josef Kröll ◽  
Live S. Luteberget ◽  
Erich Müller ◽  
...  

AbstractIn Super-G alpine ski racing mean speed is nearly as high as in Downhill. Hence, the energy dissipated in typical impact accidents is similar. However, unlike Downhill, on Super-G courses no training runs are performed. Accordingly, speed control through course design is a challenging but important task to ensure safety in Super-G. In four male World Cup alpine Super-G races, terrain shape, course setting and the mechanics of a high-level athlete skiing the course were measured with differential global navigation satellite systems (dGNSS). The effects of course setting on skier mechanics were analysed using a linear mixed effects model. To reduce speed by 0.5 m/s throughout a turn, the gate offset needs to be increased by + 51%. This change simultaneously leads to a decrease in minimal turn radius (− 19%), an increase in impulse (+ 27%) and an increase in maximal ground reaction force (+ 6%). In contrast, the same reduction in speed can also be achieved by a − 13% change in vertical gate distance, which also leads to a small reduction in minimal turn radius (− 4%) impulse (− 2%), and no change in maximal ground reaction force; i.e. fewer adverse side effects in terms of safety. It appears that shortening the vertical gate distance is a better and safer way to reduce speed in Super-G than increasing the gate offset.


Sign in / Sign up

Export Citation Format

Share Document