scholarly journals Investigation of negative moment reinforcing steel in pre-cast pre-stressed concrete beam bridge decks

2014 ◽  
Author(s):  
Sameera Tharanga Jayathilaka
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoli Shi ◽  
Bingbing Zhao ◽  
Yuling Yao ◽  
Feng Wang

In order to make informed decisions on routine maintenance of bridges of expressways, the hierarchical regression analysis method was used to quantify factors influencing routine maintenance cost. Two calculation models for routine maintenance cost based on linear regression and time-series analysis were proposed. The results indicate that the logarithm of the historical routine maintenance cost is the dependent variable and the bridge age is the independent variable. The linear regression analysis was used to obtain a cost prediction model for routine maintenance of a beam bridge, which was combined with the quantity and price, and verified by a physical engineering example. In order to cope with the cost changes and future demands brought about by the emergence of new maintenance technologies, the time-series analysis method was used to obtain a model to predict the engineering quantities for the routine maintenance of a bridge based on standardized minor repair engineering quantities. Taking into account the actual cost of the minor repair project as well as the time-series analysis’ sample size demands, the annual engineering quantity was randomly decomposed into four quarterly data quantities, and the time-series analysis result was verified by physical engineering. These results can improve the calculation accuracy of the routine maintenance costs of reinforced concrete beam bridges. Furthermore, it can have a certain application value for improving the cost measurement module of bridge maintenance management systems.


2021 ◽  
Author(s):  
Tehseenullah Gumaryani

The deterioration of concrete can be due to: (1) the corrosion of reinforcement; (2) freezing and thawing, including frost damage; (3) chloride ingress; (4) carbonation of concrete; (5) sulphate attack; (6) acid attack; (7) alkali attack; (8) alkaliaggregate reaction; (9) salt attack; and (10) abrasion. Investigation of the durability of concrete generally consists of either the causes of deterioration or the extent of it. Usually, methods used to improve the durability of concrete aim to prevent the causes of deterioration; however, occasionally methods that limit the extent of damage are employed. In this context, and in order to propose test, which can assess the durability between the material properties and deterioration mechanisms, is carried out. Such an analysis should help to focus the attention of various investigators the key issues that ultimately determine the durability of concrete structures. Concerning the various deterioration mechanisms described above, one of the fundamental properties that influences the initiation and extent of damage of concrete is corrosion of reinforcement in the concrete structure. Environmental effects such as the freezing and thawing cycles have caused deterioration of the bridge decks and all other exposed reinforced concrete structures. Concrete is full of microcracks even when it is not loaded. When under vehicular traffic, some structural cracks form that can join the other already existing cracks, providing an easy route to reinforcing steel for the deicing salt. The presence of shrinkage and temperature cracks can also do the same. When chloride ions along with moisture reach the level of reinforcing steel, they start corroding the steel reinforcement. Corrosion of steel reinforcement in concrete bridge decks and parking structures is one of the most common types of deterioration, which has substantially reduced the useful life of such facilities. This widespread problem and the rapidly increasing cost of maintenance and repair have resulted in great economic and social repercussions. The rising rate of the use of chloride deicing salt is a major factor causing corrosion, and there is no feasible economic alternative to its use at present. Corrosion may occupy a greater volume than the parent steel reinforcement, thereby extending pressure on the upper concrete, causing it to spall off the main body of concrete. Common types of deterioration and corrosion mechanisms of reinforcement in concrete are reviewed with the view of effects of the concrete environment on the process. It is feasible to study the effect of the individual and combined causes on the onset and rate of reinforcement corrosion. The role of concrete design and construction practices is discussed as the first protection resort available against corrosion. The importance of concrete quality in providing protection to reinforcement cannot be overemphasized. Bleeding of concrete, which may happen during construction, can result in unfavorable consequences and lead to unfavorable consequences and also to premature corrosion of steel. The limitations and applicabilities of the various repair techniques and protective measures in existing structures, of course, have differential impacts on concrete in version environments. Cathodic protection is considered the most versatile and effective means of controlling the corrosion of steel and subsequent deterioration of the concrete.


Author(s):  
Rasha A Waheeb

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of crushing that are almost identical for all types of steelreinforcement details and the basic requirements for the acceptable behaviorof reinforced concrete joints in the installations and the efficiency of thejoint and this may help us to prepare for disasters, whether natural or other,as happens with tremors The floor and failure that may occur due to wrongdesigns or old buildings and the possibility of using those connections totreat those joints and sections in reinforced or unarmed concrete facilitiesto preserve the safety of humans and buildings from sudden disasters andreduce and reduce risks, as well as qualitative control over the productionof concrete connections and sections free from defects to the extreme.


2011 ◽  
Vol 71-78 ◽  
pp. 3954-3957
Author(s):  
Wu Yang ◽  
Wen Juan Yao ◽  
Xiao Yu Liu

In order to research on the stress change and influencing factor of whole construction process of simply supported to Continuous system T-beam bridge, combined with Guizhou Bai-long bridge, the stress change is carried out the real time inspection in each construction stage, and the finite element model is established to analyse Stress changes in whole construction process. The monitoring value is ​​more consistent with the theoretical value in each stage , monitoring dates and theoretical calculations showed that pre-stressed is the main factor of stress changes in construction process.Pre-stressed tension in negative moment region has obvious influence on the stress of middle span, the stress of top and bottom plates in wet joints will be equivalent after tendons tension in negative moment Region.


Sign in / Sign up

Export Citation Format

Share Document