scholarly journals Identification and Genetic Analysis of wunen, a Gene Guiding Drosophila melanogaster Germ Cell Migration

Genetics ◽  
1996 ◽  
Vol 143 (3) ◽  
pp. 1231-1241 ◽  
Author(s):  
Nian Zhang ◽  
Jiaping Zhang ◽  
Yan Cheng ◽  
Ken Howard

Abstract We describe a novel genetic locus, wunen (wun), required for guidance of germ cell migration in early Drosophila development. Loss of wun function does not abolish movement but disrupts the orientation of the motion causing the germ cells to disperse even though their normal target, the somatic gonad, is well formed. We demonstrate that the product of this gene enables a signal to pass from the soma to the germ line and propose that the function of this signal is to selectively stabilize certain cytoplasmic extensions resulting in oriented movement. To characterize this guidance factor, we have mapped wun to within 100 kb of cloned DNA.

Genetics ◽  
2002 ◽  
Vol 162 (1) ◽  
pp. 273-284 ◽  
Author(s):  
Clark R Coffman ◽  
Rachel C Strohm ◽  
Fredrick D Oakley ◽  
Yukiko Yamada ◽  
Danielle Przychodzin ◽  
...  

Abstract Drosophila germ cells form at the posterior pole of the embryo and migrate to the somatic gonad. Approximately 50% of the germ cells that form reach their target. The errant cells within the embryo undergo developmentally regulated cell death. Prior studies have identified some autosomal genes that regulate germ cell migration, but the genes that control germ cell death are not known. To identify X-linked genes required for germ cell migration and/or death, we performed a screen for mutations that disrupt these processes. Here we report the identification of scattershot and outsiders, two genes that regulate the programmed death of germ cells. The scattershot gene is defined by a mutation that disrupts both germ cell migration and the death of germ cells ectopic to the gonad. Maternal and zygotic expression of scattershot is required, but the migration and cell death functions can be genetically uncoupled. Zygotic expression of wild-type scattershot rescues germ cell pathfinding, but does not restore the programmed death of errant cells. The outsiders gene is required zygotically. In outsiders mutant embryos, the appropriate number of germ cells is incorporated into the gonad, but germ cells ectopic to the gonad persist.


Development ◽  
1993 ◽  
Vol 119 (Supplement) ◽  
pp. 213-218 ◽  
Author(s):  
Ken Howard ◽  
Mariusz Jaglarz ◽  
Nian Zhang ◽  
Jaymini Shah ◽  
Rahul Warrior

Cell migration is a common feature of development. In order to understand more about the factors that control these movements we have embarked on further analysis of the migration of Drosophila germ cells. This process involves passage of the germ cells across the gut primordium and migration toward the mesoderm where the somatic gonad forms. We are particularly interested in the early phase of this migration when the germ cells interact with the amnioproctodeal invagination, the developing gut, before entering into association with the mesoderm. We will summarize the results of our and other studies of these events before describing a number of enhancer trap lines which show expression in the amnioproctodeal invagination during the early phase of germ cell migration. These reveal more about the complexity of this tissue and suggest this tissue is capable of guiding the early phase of germ cell migration.


Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 655-666 ◽  
Author(s):  
H.T. Broihier ◽  
L.A. Moore ◽  
M. Van Doren ◽  
S. Newman ◽  
R. Lehmann

In Drosophila as well as many vertebrate systems, germ cells form extraembryonically and migrate into the embryo before navigating toward gonadal mesodermal cells. How the gonadal mesoderm attracts migratory germ cells is not understood in any system. We have taken a genetic approach to identify genes required for germ cell migration in Drosophila. Here we describe the role of zfh-1 in germ cell migration to the gonadal mesoderm. In zfh-1 mutant embryos, the initial association of germ cells and gonadal mesoderm is blocked. Loss of zfh-1 activity disrupts the development of two distinct mesodermal populations: the caudal visceral mesoderm and the gonadal mesoderm. We demonstrate that the caudal visceral mesoderm facilitates the migration of germ cells from the endoderm to the mesoderm. Zfh-1 is also expressed in the gonadal mesoderm throughout the development of this tissue. Ectopic expression of Zfh-1 is sufficient to induce additional gonadal mesodermal cells and to alter the temporal course of gene expression within these cells. Finally, through analysis of a tinman zfh-1 double mutant, we show that zfh-1 acts in conjunction with tinman, another homeodomain protein, in the specification of lateral mesodermal derivatives, including the gonadal mesoderm.


Development ◽  
1998 ◽  
Vol 125 (4) ◽  
pp. 667-678 ◽  
Author(s):  
L.A. Moore ◽  
H.T. Broihier ◽  
M. Van Doren ◽  
L.B. Lunsford ◽  
R. Lehmann

Gonadogenesis in the Drosophila embryo is a complex process involving numerous cellular migratory steps and cell-cell interactions. The mechanisms guiding germ cells to move through, recognize and adhere to specific cell types are poorly understood. In order to identify genes that are required for these processes, we have conducted an extensive mutagenesis of the third chromosome and screened for mutations disrupting germ cell migration at any point in embryonic development. Phenotypic analysis of these mutants demonstrates that germ cell migration can be broken down into discrete developmental steps, with each step requiring a specific set of genes. Many of these genes are involved in the development of gonadal mesoderm, the tissue that associates with germ cells to form the embryonic gonad. Moreover, mutations that we isolated affecting embryonic patterning as well as germ cell migration suggest that the origin of gonadal mesoderm lies within the eve domain of the developing mesoderm.


Genetics ◽  
1999 ◽  
Vol 153 (4) ◽  
pp. 1825-1838 ◽  
Author(s):  
Gustavo Arrizabalaga ◽  
Ruth Lehmann

AbstractThe Drosophila protein Nanos encodes an evolutionarily conserved protein with two zinc finger motifs. In the embryo, Nanos protein function is required for establishment of the anterior-posterior body pattern and for the migration of primordial germ cells. During oogenesis, Nanos protein is involved in the establishment and maintenance of germ-line stem cells and the differentiation of oocyte precursor cells. To establish proper embryonic patterning, Nanos acts as a translational regulator of hunchback RNA. Nanos' targets for germ cell migration and development are not known. Here, we describe a selective genetic screen aimed at isolating new nanos alleles. The molecular and genetic analysis of 68 new alleles has allowed us to identify amino acids critical for nanos function. This analysis shows that the CCHC motifs, which coordinate two metal ions, are essential for all known functions of Nanos protein. Furthermore, a region C-terminal to the zinc fingers seems to constitute a novel functional domain within the Nanos protein. This “tail region” of Nanos is required for abdomen formation and germ cell migration, but not for oogenesis.


2018 ◽  
Author(s):  
Susannah H. Kassmer ◽  
Delany Rodriguez ◽  
Anthony DeTomaso

AbstractIn the colonial ascidian Botryllus schlosseri, long-lived germline stem cells (GSCs) migrate to new germline niches as they develop during repetitive cycles of asexual reproduction. ABC-transporters are involved in the export of lipid-signaling molecules, but their roles in germ cell migration are poorly understood. Here, we show that in Botryllus, abcc1 and abcb1 are highly expressed in germ cells, and inhibition of ABC-transporter activity leads to failure of germ cell migration. Phospholipase A2 (PLA2) produces arachidonic acid, which is further metabolized to eicosanoid signaling molecules. In humans, 12-lipoxygenase (LOX) metabolizes arachidonic acid to12-Hydroxyeicosatetraenoic acid (12-S-HETE), which stimulates migration of mammalian cancer cells and smooth muscle cells. We show that PLA2 and LOX activity are required for germ cell migration. A potential homolog to the human receptor for 12-S-HETE, BSgpr31, is expressed in germ cells. 12-S-HETE rescues migration towards S1P in the presence of inhibitors of ABCC1, ABCB1, PLA2 or LOX, and a gradient of 12-S-HETE enhances chemotaxis towards S1P and stimulates motility. We conclude that 12-S-HETE is a secondary chemoattractant exported by ACB-transporters that is required for migration of germ cells towards S1P. We also find that in the presence of S1P, detection of an 12-S-HETE gradient initiates an autologous positive feedback loop that may sustain migration. This is the first report of an eicosanoid-signaling molecule regulating germ cell migration.


2005 ◽  
Vol 17 (5) ◽  
pp. 587 ◽  
Author(s):  
Yixiang Zhang ◽  
Xiumei Jin ◽  
Haitang Han ◽  
Zandong Li

Polychlorinated biphenyls cause developmental and physiological anomalies in the reproductive system. This study investigated the effects of 2,2′,5,5′-tetrachlorobiphenyl (PCB52), which can produce oestrogenic effects on the homeostasis of chicken primordial germ cells from the initial stage until completion of their settlement in the gonadal primordium. The blastoderm of chicken embryos was injected with 1 μL PCB52 (10 µmol/L) and oestradiol (100 µmol/L) before incubation, and the number of primordial germ cells was determined during their migration and development. The number of primordial germ cells in germinal crescents in PCB52-treated groups was slightly decreased (P = 0.068), but it was reduced significantly at stages 13–15 and 28–30 (P < 0.01, respectively) compared with controls. No obvious effects on primordial germ cell migration were observed with oestradiol treatments. The present results suggest that the influence of PCB52 on chicken primordial germ cell migration and proliferation may be via its toxic effect, not its oestrogen-mimicking effect, and provide information on the sensitivity of primordial germ cells to the direct action of PCB52.


Sign in / Sign up

Export Citation Format

Share Document