DuPont cellulosic ethanol: Sustainable corn stover harvest for biofuel production

2012 ◽  
Author(s):  
Andy Heggenstaller
Author(s):  
Kara G. Cafferty ◽  
David J. Muth ◽  
Jacob J. Jacobson ◽  
Kenneth M. Bryden

Engineering feedstock supply systems that deliver affordable, high-quality biomass remains a challenge for the emerging bioenergy industry. Cellulosic biomass is geographically distributed and has diverse physical and chemical properties. Because of this feedstock supply systems that deliver cellulosic biomass resources to biorefineries require integration of a broad set of engineered unit operations. These unit operations include harvest and collection, storage, preprocessing, and transportation processes. Design decisions for each feedstock supply system unit operation impact the engineering design and performance of the other system elements. These interdependencies are further complicated by spatial and temporal variances such as climate conditions and biomass characteristics. This paper develops an integrated model that couples a SQL-based data management engine and systems dynamics models to design and evaluate biomass feedstock supply systems. The integrated model, called the Biomass Logistics Model (BLM), includes a suite of databases that provide 1) engineering performance data for hundreds of equipment systems, 2) spatially explicit labor cost datasets, and 3) local tax and regulation data. The BLM analytic engine is built in the systems dynamics software package Powersim™. The BLM is designed to work with thermochemical and biochemical based biofuel conversion platforms and accommodates a range of cellulosic biomass types (i.e., herbaceous residues, short-rotation woody and herbaceous energy crops, woody residues, algae, etc.). The BLM simulates the flow of biomass through the entire supply chain, tracking changes in feedstock characteristics (i.e., moisture content, dry matter, ash content, and dry bulk density) as influenced by the various operations in the supply chain. By accounting for all of the equipment that comes into contact with biomass from the point of harvest to the throat of the conversion facility and the change in characteristics, the BLM evaluates economic performance of the engineered system, as well as determining energy consumption and green house gas performance of the design. This paper presents a BLM case study delivering corn stover to produce cellulosic ethanol. The case study utilizes the BLM to model the performance of several feedstock supply system designs. The case study also explores the impact of temporal variations in climate conditions to test the sensitivity of the engineering designs. Results from the case study show that under certain conditions corn stover can be delivered to the cellulosic ethanol biorefinery for $35/dry ton.


2015 ◽  
Vol 17 (5) ◽  
pp. 2896-2903 ◽  
Author(s):  
Ursula Fabiola Rodríguez-Zúñiga ◽  
David Cannella ◽  
Roberto de Campos Giordano ◽  
Raquel de Lima Camargo Giordano ◽  
Henning Jørgensen ◽  
...  

Sugarcane bagasse, corn stover, and wheat straw are among the most available resources for the production of cellulosic ethanol.


BioResources ◽  
2020 ◽  
Vol 15 (4) ◽  
pp. 8662-8676
Author(s):  
Maria Mushtaq ◽  
Muhammad Javaid Asad ◽  
Muhammad Zeeshan Hyder ◽  
Syed Muhammad Saqlan Naqvi ◽  
Saad Imran Malik ◽  
...  

Utilization of biomass for production of second generation bioethanol was considered as a way to reduce burdens of fossil fuel in Pakistan. The materials wheat straw, rice straw, cotton stalk, corn stover, and peel wastes were used in this experiment. Various parameters, such as acidic and alkali pretreatment, enzymatic hydrolysis by cellulases, and effect of proteases inhibitors on ethanol production, were examined. Fermentation was completed by the yeasts Saccharomyces cerevisiae and Clostridium thermocellum separately, and their ethanol production were compared and maximum ethanol yield was obtained with wheat straw i.e.,11.3 g/L by S. cerevisiae and 8.5 g/L by C. thermocellum. Results indicated that a higher quantity of sugar was obtained from wheat straw (19.6 ± 1.6 g/L) followed by rice straw (17.6 ± 0.6 g/L) and corn stover (16.1 ± 0.9 g/L) compared to the other evaluated biomass samples. A higher yield of ethanol (11.3 g/L) was observed when a glucose concentration of 21.7 g/L was used, for which yeast fermentation efficiency was 92%. Results also revealed the increased in ethanol production (93%) by using celluases in combination with recombinant Serine protease inhibitors from C. thermocellum. It is expected that the use of recombinant serpins with cellulases will play a major role in the biofuel production by using agricultural biomass. This will also help in the economics of the biofuel.


2020 ◽  
Vol 138 ◽  
pp. 105579 ◽  
Author(s):  
Patrick A. Johnston ◽  
Haoqin Zhou ◽  
Alvina Aui ◽  
Mark Mba Wright ◽  
Zhiyou Wen ◽  
...  

2012 ◽  
Vol 47 ◽  
pp. 372-386 ◽  
Author(s):  
Zhengxi Tan ◽  
Shuguang Liu ◽  
Norman Bliss ◽  
Larry L. Tieszen

2017 ◽  
Vol 107 ◽  
pp. 102-112 ◽  
Author(s):  
Maichel M. Aguayo ◽  
Subhash C. Sarin ◽  
John S. Cundiff ◽  
Kevin Comer ◽  
Tim Clark

Sign in / Sign up

Export Citation Format

Share Document