scholarly journals Identification of local sesars of tejakula buleleng bali with anomaly gravity data using second vertical derivative method

2020 ◽  
Vol 3 (1) ◽  
pp. 18-25
Author(s):  
Komang Ngurah Suarbawa ◽  
I Gusti Agung Putra Adnyana ◽  
Elvin Riyono

Research has been carried out related to subsurface structures in the Tejakula Buleleng Bali area and its surroundings using the gravity method. This study aims to identify the local Tejakula fault. The data used in this study is gravity anomaly data obtained from observations of Geodetic Satellite (GEOSAT). The method used in interpreting the type of disturbance uses the Second Vertical Derivative method, which then produces two-dimensional (2D) and three-dimensional (3D) fault model interpretations. Based on the results obtained in the study, the condition of the bouguer gravity anomaly value in the Tejakula area and its surroundings at the research location is in the range of 65 mGal to 185 mGal. Meanwhile, based on the Second Vertical Derivative method in determining the type of fault, the Tejakula Fault can be categorized as a mandatory fault with an upward trend.

Geophysics ◽  
1976 ◽  
Vol 41 (4) ◽  
pp. 777-777
Author(s):  
Ramesh Chander

An important possible constraint on a density model obtained from inversion of gravity data has been overlooked in the seminal paper by Green. The computed density model should be such that the corresponding total mass excess or deficit per unit length in a two‐dimensional case, or total mass excess or deficit in a three‐dimensional case, should be comparable to the value obtained by applying Gauss’s theorem to the observed gravity anomaly data (Grant and West, 1965, p. 227–28 and p. 232).


2021 ◽  
Author(s):  
◽  
Alistair Stronach

<p><b>New Zealand’s capital city of Wellington lies in an area of high seismic risk, which is further increased by the sedimentary basin beneath the Central Business District (CBD). Ground motion data and damage patterns from the 2013 Cook Strait and 2016 Kaikōura earthquakes indicate that two- and three-dimensional amplification effects due to the Wellington sedimentary basin may be significant. These effects are not currently accounted for in the New Zealand Building Code. In order for this to be done, three-dimensional simulations of earthquake shaking need to be undertaken, which requires detailed knowledge of basin geometry. This is currently lacking, primarily because of a dearth of deep boreholes in the CBD area, particularly in Thorndon and Pipitea where sediment depths are estimated to be greatest.</b></p> <p>A new basin depth map for the Wellington CBD has been created by conducting a gravity survey using a modern Scintrex CG-6 gravity meter. Across the study area, 519 new high precision gravity measurements were made and a residual anomaly map created, showing a maximum amplitude anomaly of -6.2 mGal with uncertainties better than ±0.1 mGal. Thirteen two-dimensional geological profiles were modelled to fit the anomalies, then combined with existing borehole constraints to construct the basin depth map. </p> <p>Results indicate on average greater depths than in existing models, particularly in Pipitea where depths are interpreted to be as great as 450 m, a difference of 250 m. Within 1 km of shore depths are interpreted to increase further, to 600 m. The recently discovered basin bounding Aotea Fault is resolved in the gravity data, where the basement is offset by up to 13 m, gravity anomaly gradients up to 8 mGal/km are observed, and possible multiple fault strands identified. A secondary strand of the Wellington Fault is also identified in the north of Pipitea, where gravity anomaly gradients up to 18 mGal/km are observed.</p>


Geophysics ◽  
1951 ◽  
Vol 16 (1) ◽  
pp. 29-50 ◽  
Author(s):  
Thomas A. Elkins

The second derivative method of interpreting gravity data, although its use is justifiable only on data of high accuracy, offers a simple routine method of locating some types of geologic anomalies of importance in oil and mineral reconnaissance. The theoretical formula by which it is possible to compute the second (vertical) derivative of any harmonic function from its values in a horizontal plane is derived for both the two‐dimensional and the three‐dimensional cases. The graphical method of computing the second derivative is discussed, especially as to the sources of error. A numerical coefficient equivalent of the graphical method is also presented. Formulas and graphs for the second derivative of the gravity effect of such geometrically simple shapes as the sphere, the infinite horizontal cylinder, the semi‐infinite horizontal plane, and the vertical fault, are presented with discussions of their value in the interpretation of practical data. Finally, the gravity and second derivative maps of portions of some important oil provinces are presented and compared to show the higher resolving power of the second derivative.


2021 ◽  
Author(s):  
Alistair Stronach

<p><b>New Zealand’s capital city of Wellington lies in an area of high seismic risk, which is further increased by the sedimentary basin beneath the Central Business District (CBD). Ground motion data and damage patterns from the 2013 Cook Strait and 2016 Kaikōura earthquakes indicate that two- and three-dimensional amplification effects due to the Wellington sedimentary basin may be significant. These effects are not currently accounted for in the New Zealand Building Code. In order for this to be done, three-dimensional simulations of earthquake shaking need to be undertaken, which requires detailed knowledge of basin geometry. This is currently lacking, primarily because of a dearth of deep boreholes in the CBD area, particularly in Thorndon and Pipitea where sediment depths are estimated to be greatest.</b></p> <p>A new basin depth map for the Wellington CBD has been created by conducting a gravity survey using a modern Scintrex CG-6 gravity meter. Across the study area, 519 new high precision gravity measurements were made and a residual anomaly map created, showing a maximum amplitude anomaly of -6.2 mGal with uncertainties better than ±0.1 mGal. Thirteen two-dimensional geological profiles were modelled to fit the anomalies, then combined with existing borehole constraints to construct the basin depth map. </p> <p>Results indicate on average greater depths than in existing models, particularly in Pipitea where depths are interpreted to be as great as 450 m, a difference of 250 m. Within 1 km of shore depths are interpreted to increase further, to 600 m. The recently discovered basin bounding Aotea Fault is resolved in the gravity data, where the basement is offset by up to 13 m, gravity anomaly gradients up to 8 mGal/km are observed, and possible multiple fault strands identified. A secondary strand of the Wellington Fault is also identified in the north of Pipitea, where gravity anomaly gradients up to 18 mGal/km are observed.</p>


2019 ◽  
Vol 125 ◽  
pp. 14008
Author(s):  
Annisa Dwi Hafidah ◽  
Yunus Daud ◽  
Alfian Usman

Sumatra Island has the largest geothermal potential in Indonesia spread along the subduction zone between the Indian-Australian plate and the Eurasian plate. “AUN” geothermal field located in Sumatra Island and considered to be one of the largest potential geothermal prospects in Indonesia. This study is focused on identifying the prospect of “AUN” geothermal field using gravity method. First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) analysis were applied in order to determine a more accurate boundary of the fault. 3D inversions of gravity data were used to reconstruct subsurface model. The result show that analysis of First Horizontal Derivative (FHD) and Second Vertical Derivative (SVD) can confirm southwest-northeast fault and caldera structure as a boundary of geothermal reservoir and 3D gravity inversion can show subsurface layers with density 2.5 gr/cc to 2.8 gr/cc inside the boundary which is determined as a heat source in “AUN” geothermal field.


2020 ◽  
Vol 5 (1) ◽  
pp. 75-88
Author(s):  
Yasrifa Fitri Aufia ◽  
Karyanto Karyanto ◽  
Rustadi Rustadi

The research area "Y" is an area of gold mineralization with low sulfidation epithermal type deposit. The existence of this type of mineralization on the path marked by the presence of mineral deposits, which form the quartz veined below the surface of the deposited within the structure of the fault. In this study, analysis of gravity data using derivatives analysis, i.e. First Horizontal Derivative (FHD) to determine the boundary fault structure and Second Vertical Derivative (SVD) to determine the type of fault. The existence of the fault structure integrated with subsurface modeling results in two-dimensional and three-dimensional. The results showed three line slice made in the area of research, identified structure of down faults (normal) trending northeast - south on slice 1 with an estimated dip (slope) is 22° and expected of strike on this fault is N 158° W and thrust fault structure trending northwest - south on slice 2 also slice 3 with an estimated dip (slope) is 22° and expected of strike on this fault is N 158° E. The results of the modeling of two-dimensional and three-dimensional show fracture structure is at the density of 2 g/cc – 2,67 g/cc in the depth of around 100 m - 250 m that consists of sedimentary rocks (clay and sandstone) with a density of 2,2 g/cc – 2,3 g/cc at the age of Tertiary Pliocene, tuff rock with a density of 2,4 g/cc – 2,5 g/cc at the age of Early Miocene and bedrock (basement) in andesite form with a density of 2,67 g/cc.


Geophysics ◽  
1971 ◽  
Vol 36 (3) ◽  
pp. 554-570 ◽  
Author(s):  
Thomas M. Davis

In order to combine the advantages of a direct quantitative interpretation with an efficient regional‐residual separation, an interpretation technique based on characteristic curves derived through digital bandpass filtering has been developed for the two‐dimensional gravity fault model. Although the two‐dimensional fault model suffers from the lack of characteristic parameters, reasonably accurate direct interpretations are possible even in the presence of regional fields whose long wavelength spectral components overlap those of the anomaly. The characteristic curves given here were designed for use on relatively large deep structures with depths and thicknesses ranging from 0.8 to 8 km; however, the slight modifications necessary to accommodate any range are presented in detail.


Sign in / Sign up

Export Citation Format

Share Document