scholarly journals THE THERMAL ENVIRONMENT AND ENERGY CONSUMPTION OF THE INDOOR OF A LIGHT-GAUGE STEEL FRAMED RESIDENTIAL HOUSE WITH EXTERNAL THERMAL INSULATION STRUCTURE : (Part 2) Evaluation in a temperate region and the potential for further energy savings

2005 ◽  
Vol 70 (596) ◽  
pp. 7-14
Author(s):  
Yoshimitsu MURAHASHI ◽  
Kenzo SUZUKI ◽  
Yutaka TONOOKA ◽  
Yoshifumi SAKUMOTO
Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6597
Author(s):  
Ahmet Bircan Atmaca ◽  
Gülay Zorer Gedik ◽  
Andreas Wagner

Mosques are quite different from other building types in terms of occupant type and usage schedule. For this reason, they should be evaluated differently from other building types in terms of thermal comfort and energy consumption. It is difficult and probably not even necessary to create homogeneous thermal comfort in mosques’ entire usage area, which has large volumes and various areas for different activities. Nevertheless, energy consumption should be at a minimum level. In order to ensure that mosques are minimally affected by outdoor climatic changes, the improvement of the properties of the building envelope should have the highest priority. These optimal properties of the building envelope have to be in line with thermal comfort in mosques. The proposed method will be a guide for designers and occupants in the design process of new mosques or the use of existing mosques. The effect of the thermal properties of the building envelope on energy consumption was investigated to ensure optimum energy consumption together with an acceptable thermal comfort level. For this purpose, a parametric simulation study of the mosques was conducted by varying optical and thermal properties of the building envelope for a temperature humid climate zone. The simulation results were analyzed and evaluated according to current standards, and an appropriate envelope was determined. The results show that thermal insulation improvements in the roof dome of buildings with a large volume contributed more to energy savings than in walls and foundations. The use of double or triple glazing in transparent areas is an issue that should be considered together with the solar energy gain factor. Additionally, an increasing thickness of thermal insulation in the building envelope contributed positively to energy savings. However, the energy savings rate decreased after a certain thickness. The proposed building envelope achieved a 33% energy savings compared to the base scenario.


2018 ◽  
Vol 22 (Suppl. 3) ◽  
pp. 785-795 ◽  
Author(s):  
Nikolina Pivac ◽  
Sandro Nizetic ◽  
Vlasta Zanki

An experimental field study has been conducted for typical educational research building facility (office building). The research data was gathered by the systematic monitoring of the offices and adaptive occupant behavior during the typical working day in the spring period. Different sensors and data loggers for temperature, relative humidity, CO2 concentration, had been mounted in order to collect data for analysis of thermal comfort conditions. Moreover, occupant surveys and interviews in form of questionnaire were also brought to examine the psychological and social impacts of the occupants? behavior regarding energy consumption. The inductive scientific method is used for data processing, i. e. descriptive and inferential statistical analysis of the results was made. Based on the analysis of the conducted study, it was found that thermal environment of the observed building is within the standards (i. e. specific parameters are within the range) and that the occupants are generally satisfied with thermal conditions in their offices. However, they do not pay much attention to conserving energy which is an important finding as it is directly related to the energy consumption. Thus, more attention should be directed to the education of the users and in general, to enable energy savings in the future.


2022 ◽  
Vol 13 (1) ◽  
pp. 285-290
Author(s):  
Zulai Jarmai Baba-Girei ◽  
Binta Fatima Yahaya ◽  
Ruth Rakiya Martins

Smart energy conservation research is gaining traction in a variety of industries throughout the world. The current research is projected to cut energy consumption in the construction sector, which has already reached 49% globally and is expected to rise by 2% annually, costing millions of dollars per month. Balancing energy savings with thermal satisfaction is a current difficulty, as most researchers have concentrated on attaining energy savings without reaching the thermal contentment of the occupant, which could pose a health risk to both young and old occupants. To address the problem, we conducted empirical studies with 193 participants in the Northern part of Nigeria, where they were exposed to an indoor temperature of 22°C to determine their thermal environment, choice and comfort votes, viewed and favored control, and overall thermal satisfaction, which will help calculate and define the unused thermal satisfaction thermostat and later.


2019 ◽  
Vol 111 ◽  
pp. 03063
Author(s):  
Erika Guolo ◽  
Francesca Cappelletti ◽  
Piercarlo Romagnoni ◽  
Fabio Raggiotto

According to the European targets for 2030, for managing a policy of improving the environmental sustainability of buildings it is essential to assess the buildings and building components impacts both in the construction and in the utilization phases. The use of building is essential on the environmental impacts (equal to about 90%) as consequence the commitment must be aimed at reducing energy consumption and CO2 emissions of buildings during their lifetime, through correct design and proper selection of materials and technologies; above all, the use of thermal insulation materials is fundamental. A useful support tool for manufacturers and designers for the eco-design innovation of products and production processes is the LCA - Life Cycle Assessment: the assessment allows to identify and to quantify energy, consumed materials and residues released as environment impact during the processes. Comparison of the environmental impact data of the different products it is possible by adopting the EPD - Environmental Product Declarations approach, which envisages, for each group of products, the elaboration of a specific technique, the PRC - Product Category Rules. In the building sector, among the thermal insulating materials currently in use, the rigid expanded polyurethane (thermoset polymeric insulation products with a substantially closed cell structure including both polymer types based on PIR and PUR), allows to obtain excellent characteristics of very low density masses, resulting in a reduction in energy consumption deriving from transport, installation and disposal or recycling at the end of life. Numerous studies on environmental impacts during the polyurethane life cycle have shown that the amount of resources consumed for the production of polyurethane foam is amortized in the use phase of buildings thanks to the energy savings determined by thermal insulation. Very important features of polyurethane is the high durability in time (higher or equal to the life of the building). This is demonstrated following some tests of physical characterization and verification of durability of rigid polyurethane insulation panels used in different types of building and construction, without maintenance: according to the determination of thermal conductivity and of the compressive strength is proven as the values are unchanged despite the years of use (over 40 years). The paper presents the LCA evaluation of a polyurethane panel; the durability of thermal properties has been verified by experimental tests.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0247608
Author(s):  
Moza Ghorab Al Marri ◽  
Mohammad A. Al-Ghouti ◽  
Vasanth C. Shunmugasamy ◽  
Nabil Zouari

Air-conditioning systems make the most significant part of energy consumption in the residential sector. There is no denying that it is essential to produce a comfortable indoor thermal environment for residents in a building. The actual goal is to achieve thermal comfort level without putting too much cost on the ecological system by trying to conserve the amount of energy consumed. An effective way to help achieve such a goal is by incorporating thermal insulation in buildings. Thermal insulations help reduce thermal energy gained during the implementation of a desired thermal comfort level. This study aims to use an environmentally friendly nanoparticle of date pits to create thermal insulations that can be used in buildings. Different ratios of the nanoparticle of the date pits and sand composite were investigated. Fourier transform infrared spectroscopy and scanning electron microscopy were used to characterize the new materials. The material with nanoparticles of date pits and 50% by-volume epoxy provided good thermal insulation with thermal conductivity of 0.26 W⁄mK that could be used in the existing buildings. This has the potential to reduce the overall energy consumption by 4,494 kWh and thereby reduce CO2 emissions of a 570 m2 house by 1.8 tons annually. In conclusion, the future of using nanoparticles of date pits in construction is bright and promising due to their promising results.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


Sign in / Sign up

Export Citation Format

Share Document