scholarly journals INFLUENCE OF CRAWLSPACE DESIGN AND UTILIZATION ON THERMAL ENVIRONMENT IN DETACHED HOUSE WITH INSULATED FOUNDATION FOR MODERATE AND HUMID CLIMATE REGION

2006 ◽  
Vol 71 (605) ◽  
pp. 31-38
Author(s):  
Qingrong LIU ◽  
Yuji RYU ◽  
Harumi KAGAWA ◽  
Takanori KOJIMA
2014 ◽  
Vol 911 ◽  
pp. 504-508 ◽  
Author(s):  
Hung Ren Hsieh ◽  
Wun Yuan Chen ◽  
Hsin Yu

In the empirical case studies of the seven detached house buildings situated in Yilan, Taiwan in a hot and humid climate, this research conducted the actual measurements and analysis of the Summertime Indoor and Outdoor thermal environment parameters in order to accomplish the research of Time Lag Phenomenon of Summertime Indoor Temperature and Humidity in the Buildings of Light (Composite) Constructions and Heavy (Reinforced Concrete) Constructions. Firstly, it indicated that given the condition of doors and windows in closed positions, there would be Time Lag Phenomenon for both of the indoor Temperature and Humidity measurements in domestic buildings. The Temperature Time Lag for Heavy Construction Buildings had a duration of around three hours, almost as twice that of the figure for Light Construction Buildings. There was a significant correlation between Quantity of Interior Finishes and Humidity Time Lag inside domestic buildings, whereas the bigger the Quantity of Interior Finishes, the longer the Humidity Time Lag. Secondly, it also showed that given the condition of doors and windows in opened positions, there was almost zero Time Lag for both of the domestic indoor Temperature and Humidity measurements. Last but not least, generally speaking, the Ratio of Indoor/Outdoor Diurnal Temperature Range of Light Construction Buildings were higher than that of Heavy Construction Buildings. In particular, given the condition of doors and windows in opened positions with natural ventilation in summertime, it was slightly cooler inside the Light Construction Domestic Buildings than the Heavy Construction Domestic Buildings.


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 975
Author(s):  
Jianbo Jia ◽  
Wende Yan ◽  
Xiaoyong Chen ◽  
Wenna Liu

Little information is available on horizontal precipitation in forest land in semi-humid climate regions. In this study, the quantity and duration of horizontal precipitation were investigated using the high precision weighing lysimeter system in the mountainous areas of northern China during the experiment year 2011 and 2012. The purpose of this study was to better understand the formation mechanisms of horizontal precipitation in the semi-humid climate region. The results showed that hourly values of horizontal precipitation distributed between 0 and 0.1 mm, and that the one-night values distributed between 0.2 and 0.4 mm. The number of days with horizontal precipitation accounted for about 45% of the whole year. The average monthly amount of horizontal precipitation was 4.5 mm in the non-growing season, while it was a mere 1.6 mm in the growing season. The total amount of horizontal precipitation in the year was about 33 mm. Horizontal precipitation represented about 4.61% and 4.23% of the annual precipitation in 2011 and 2012. During the non-growing season, water vapor absorbed by the soil was greater than canopy and soil condensation, not only in terms of frequency, but also in the cumulated quantity. On a typical day, the canopy and soil condensation was 0.07 mm, accounting for 31.81% of total quantity of horizontal precipitation (0.22 mm). Air temperature, soil temperature and wind speed were negatively correlated with the quantity and duration of horizontal precipitation. This research could provide information for a better understanding of the ecological significance of horizontal precipitation in the semi-humid climate region in northern China.


Author(s):  
Asri Dinapradipta ◽  
Erwin Sudarma ◽  
Ima Defiana ◽  
Collinthia Erwindi

2019 ◽  
Vol 11 (20) ◽  
pp. 5691 ◽  
Author(s):  
Hankun Lin ◽  
Yiqiang Xiao ◽  
Florian Musso ◽  
Yao Lu

High-density urban development areas have several problems associated with them, such as the formation of urban heat islands, traffic noise, and air pollution. To minimize these problems, the green façades (GFs), which are used to guide climbing plants to grow vertically on building facade, are focused on by researchers and architects. This study focuses on GF application strategies and their optimizations for thermal comfort in a transitional space in a hot-humid climate. First, field measurements were collected from GF projects located in Guangzhou, China, in summer 2017. Second, a simulation method using computational fluid dynamics (CFD) was used to investigate the thermal effects of the GF’s foliage. Finally, seven GF typologies and one unshaded comparison model were used for simulations in three scenarios with south, east, and west orientations and compared to evaluate the effects of GFs on the thermal environment of the transitional space. The results of field measurements reveal that the GF reduced average Physiologically Equivalent Temperature (PET) by 2.54 °C, and that of CFD simulations reveal that three typologies of GFs are more effective in regulating the thermal environment in the summer. The results of this research provide support for further studies on the thermal effectiveness and design options of GFs for human comfort.


Sign in / Sign up

Export Citation Format

Share Document