scholarly journals THREE DIMENSIONAL SHAKING TABLE TESTS ON A BASE-ISOLATION SYSTEM FOR LIGHT-WEIGHT BUILDINGS

Author(s):  
Akio HORI
2011 ◽  
Vol 15 (8) ◽  
pp. 1157-1177 ◽  
Author(s):  
Donatello Cardone ◽  
Peyman Narjabadifam ◽  
Domenico Nigro

Author(s):  
C. S. Tsai ◽  
Jeng-Wen Lin ◽  
Yung-Chang Lin ◽  
Chia-Chi Chen

In order to promote seismic resistance capability of structures and simplify the manufacturing processes of an isolator, a new base isolation system called the multiple trench friction pendulum system (MTFPS) is proposed. The investigations for the proposed isolator have been carried out to address its mechanical characteristics and to assess its performance in seismic mitigation through a series of shaking table tests in this study. The MTFPS isolator can provide different natural periods, displacement capacities and damping effects in any two independent directions. The natural period and damping effect for a MTFPS isolator change continually during earthquakes. Results from the shaking table tests on a scaled three-story structure isolated with MTFPS isolators illustrate that the proposed MTFPS isolator can isolate most earthquake induced energy and provide good protection for structures from earthquake damage. In addition, the mathematical formulations for the MTFPS isolator have also been derived to examine its characteristics.


2012 ◽  
Vol 234 ◽  
pp. 96-101 ◽  
Author(s):  
Donato Cancellara ◽  
Fabio de Angelis

In the present work we have analyzed a particular base isolation system for the seismic protection of a multi-storey reinforced concrete (RC) building. The viscous dampers and friction sliders are the devices adopted in parallel for realizing the base isolation system. The base isolation structure has been designed and verified according to European seismic code EC8 and by considering for the friction sliders the influence of the sliding velocity on the value of the friction coefficient. A dynamic nonlinear analysis for a three-dimensional base isolated structure has been performed. Recorded accelerograms for bi-directional ground motions have been used which comply with the requirements imposed by EC8 for the representation of a seismic action in a time history analysis. In this paper a comparative analysis is presented between the base isolated structure with the described hybrid base isolation system and the traditional fixed base structure.


Author(s):  
Kengo Goda ◽  
Osamu Furuya ◽  
Kohei Imamura ◽  
Kenta Ishihana

At the present, base isolation system has been recognized by general earthquake resistant technique since the Great Hanshin Earthquake 1995. The seismic isolation will be aggressively applied to not only architectural and civil structures but also various structures, because the effectiveness on seismic safety had been demonstrated again in the Great East Japan Earthquake. In generally, although the base isolation system is divided into laminated rubber bearing type and friction sliding bearing type. In the case of former type, shape factor, maximum or minimum outer shapes and so on are restricted by the material characteristics in visco-elastic material. In general, the isolation structure is used in high damping rubber. However, we pay attention to base isolation using urethane elastomer. Urethane elastomer has excellent elasticity, mechanical strength, abrasion resistance, weather resistance, oil resistance, impact resistance the absorbent, anti-vibration and excellent low-temperature properties. Furthermore, it is possible to impart various characteristics by a combination of isocyanate and polyol and chain extender, requires no large-scale apparatus, it has the advantage molecular design is easy. In previous study, the research and development of laminated type base isolation device using urethane elastomer was carried out to upgrade a seismic safety for various structures. The fundamental characteristics was investigated from several loading test by using various experimental devices, and the design formula for the stiffness and equivalent damping coefficient is formulated as an approximate expression of mechanical characteristics until now. It was confirmed that urethane elastomer is not hardening up to 500% shear strain. Moreover, the experimental examination for aged deterioration in the urethane material has been continuously carried out. As the results, it was confirmed that the laminated type seismic isolation device using urethane elastomer is possible to develop as a practicable device from the stable mechanical properties as considering in design step. In this study, the small-scale laminated type base isolation device using urethane elastomer is advanced to the direction of further technical upgrading and of scale down for light-weight structure as a sever rack. The first stage, basic properties of the urethane elastomer has been investigated by loading test. Furthermore, the design equation is created by loading test using urethane elastomer. The validity of the design equation has been confirmed. The second stage, the compression creep test with laminated type base isolation device has been investigated to confirm an effect on light-weight mechanical devices.


2018 ◽  
Vol 211 ◽  
pp. 17001 ◽  
Author(s):  
Tomasz Falborski ◽  
Robert Jankowski

The present paper summarizes the preliminary results of the experimental shaking table investigation conducted in order to verify the effectiveness of a new base isolation system consisting of Polymeric Bearings in reducing strong horizontal machine-induced vibrations. Polymeric Bearing considered in the present study is a prototype base isolation system, which was constructed with the use of a specially prepared flexible polymer with improved damping properties. Dynamic oscillatory tests, during which a concrete base slab supported by four Polymeric Bearings was subjected to horizonal sinusoidal excitations characterized by different frequencies and amplitudes, were conducted in order to determine the damping properties of Polymeric Bearings and their effectiveness in mitigating structural vibrations. Equivalent damping ratios for every excitation frequency considered were determined using the experimentally obtained hysteresis loops. Final conclusions are presented and the results discussed.


Author(s):  
Shigeru Aoki ◽  
Yuji Nakanishi ◽  
Kazutoshi Tominaga ◽  
Takeshi Otaka ◽  
Tadashi Nishimura ◽  
...  

Reduction of seismic response of mechanical system is important problem for aseismic design. Some types of base isolation systems are developed and used in actual base of buildings and floors in buildings for reduction of seismic response of mechanincal system. In this paper, a base isolation system utilizing bearing with friction and restoring force of bearing is proposed. Friction bearing consists of two plates having spherical concaves and oval type metal or spherical metal with rubber. First, effectiveness of the base isolation system is examined experimentally. Using artificial time histories, the isolated table is shaken on the shaking table. The maximum value of response is reduced and sum of squares of response is significantly reduced. Power spectrum is significantly reduced in almost of all frequency regions, except for very low frequency region. Next, in order to examine reduction of seismic response of actual mechanical system, a console rack is set on the isolated plate. Seismic response is also significantly reduced. Finally, obtained results of experiment are examined by simulation method. An analytical model considering friction and restoring force is used. From simulation method, effectiveness of the proposed base isolation system is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document