scholarly journals STUDY ON THE BEAM-COLUMN JOINT OF TIMBER FRAME STRUCTURES USING DRIFT PINS : Part 2 Examinations by the experiments of the moment resisting elements and full-scale structure

Author(s):  
Naoya SHOJO ◽  
Yoshinobu FUJITANI ◽  
Yuji MAKISHIMA ◽  
Hiroyuki NOGOMI ◽  
Yoshiaki OHNO ◽  
...  

2012 ◽  
Vol 77 (673) ◽  
pp. 389-396
Author(s):  
Hiroyuki NOGUCHI ◽  
Hideyuki NASU ◽  
Seiji IWASAKI ◽  
Mizuho YANAGISAWA ◽  
Mikio KOBAYASHI ◽  
...  


2018 ◽  
Vol 195 ◽  
pp. 02014
Author(s):  
Junaedi Utomo ◽  
Antonius

Earthquake resiliency of moment resisting frames, either new or existing ones, are important for maintaining community functionality. Improving earthquake resiliency needs a strong initiative in reducing earthquake risk. Steel pipe dampers can be used to increase earthquake resiliency. Steel pipe dampers, when installed at strategic locations in the moment frame structures, dissipate most of the earthquake energy in structures through inelastic deformation so that other components of the structure are protected. Steel pipe dampers control vibration in moment frame structures and are a disposable component in structures so that the damaged dampers can be replaced easily. Steel pipe dampers are cheap and require low workmanship, therefore the recovery time after disasters is short and the cost of recovery is low. Utilizing steel pipe dampers in passive energy dissipation systems help maintain community functionality during and after disasters. Lateral displacements were quantified and used as performance indicators. Significant drift and inter story drift reduction were achieved during a numerical study. All structural components, except the steel pipe dampers, remain elastic, indicating the effectiveness of the dampers in reducing the losses due to earthquakes.





Author(s):  
Yoshiaki OHNO ◽  
Yuji MAKISHIMA ◽  
Naoya SHOJO ◽  
Hiroyuki NOGOMI ◽  
Yoshinobu FUJITANI ◽  
...  


2018 ◽  
Vol 763 ◽  
pp. 182-188 ◽  
Author(s):  
Lilliana Wiles ◽  
Jonathan Pethybridge ◽  
Timothy John Sullivan

In New Zealand there currently appears to be no simplified, effective method of analysing the rotational stiffness of beam-column joints in steel moment resisting frame structures. Many practicing engineers use simplified design tables to detail beam-column joints for strength requirements, without accounting for the flexibility of joints. This tends to underestimate the flexibility of structures and hence the drifts they undergo in wind and earthquake events. To permit improved consideration of beam-column joint stiffness in a simplified manner, this work adapts the European component method to develop a series of tables that practitioners could look up to quickly identify beam-column joint stiffness values. The potential use for such stiffness values is highlighted by examining the impact of joint flexibility on the drifts expected in a 4-storey steel MRF subject to 1 in 500 year return period earthquake loading.



2014 ◽  
Vol 59 (1) ◽  
pp. 79-92
Author(s):  
Alexander Becker

Wie erlebt der Hörer Jazz? Bei dieser Frage geht es unter anderem um die Art und Weise, wie Jazz die Zeit des Hörens gestaltet. Ein an klassischer Musik geschultes Ohr erwartet von musikalischer Zeitgestaltung, den zeitlichen Rahmen, der durch Anfang und Ende gesetzt ist, von innen heraus zu strukturieren und neu zu konstituieren. Doch das ist keine Erwartung, die dem Jazz gerecht wird. Im Jazz wird der Moment nicht im Hinblick auf ein Ziel gestaltet, das von einer übergeordneten Struktur bereitgestellt wird, sondern so, dass er den Bewegungsimpuls zum nächsten Moment weiterträgt. Wie wirkt sich dieses Prinzip der Zeitgestaltung auf die musikalische Form im Großen aus? Der Aufsatz untersucht diese Frage anhand von Beispielen, an denen sich der Weg der Transformation von einer klassischen zu einer dem Jazz angemessenen Form gut nachverfolgen lässt.<br><br>How do listeners experience Jazz? This is a question also about how Jazz music organizes the listening time. A classically educated listener expects a piece of music to structure, unify and thereby re-constitute the externally given time frame. Such an expectation is foreign to Jazz music which doesn’t relate the moment to a goal provided by a large scale structure. Rather, one moment is carried on to the next, preserving the stimulus potentially ad infinitum. How does such an organization of time affect the large scale form? The paper tries to answer this question by analyzing two examples which permit to trace the transformation of a classical form into a form germane to Jazz music.



Author(s):  
Dmitry A. Neganov ◽  
◽  
Victor M. Varshitsky ◽  
Andrey A. Belkin ◽  
◽  
...  

The article contains the comparative results of the experimental and calculated research of the strength of a pipeline with such defects as “metal loss” and “dent with groove”. Two coils with diameter of 820 mm and the thickness of 9 mm of 19G steel were used for full-scale pipe sample production. One of the coils was intentionally damaged by machining, which resulted in “metal loss” defect, the other one was dented (by press machine) and got groove mark (by chisel). The testing of pipe samples was performed by applying static internal pressure to the moment of collapse. The calculation of deterioration pressure was carried out with the use of national and foreign methodical approaches. The calculated values of collapsing pressure for the pipe with loss of metal mainly coincided with the calculation experiment results based on Russian method and ASME B31G. In case of pipe with dent and groove the calculated value of collapsing pressure demonstrated greater coincidence with Russian method and to a lesser extent with API 579/ASME FFS-1. In whole, all calculation methods demonstrate sufficient stability of results, which provides reliable operation of pipelines with defects.



2021 ◽  
Vol 242 ◽  
pp. 112532
Author(s):  
Zhenhua Huang ◽  
Liping Cai ◽  
Yashica Pandey ◽  
Yong Tao ◽  
William Telone


2021 ◽  
pp. 136943322110015
Author(s):  
Ting Guo ◽  
Na Yang ◽  
Huichun Yan ◽  
Fan Bai

This study aimed to investigate the moment carrying behavior of typical Tibetan timber beam-column joints under monotonic vertical static load and also evaluate the influence of length ratio of Gongmu to beam (LRGB) and dowels layout on the structural performance of the joint. Six full-scale specimens were fabricated with same construction but different Gongmu length and dowels position. The moment carrying performance of beam-column joints in terms of failure mode, moment resistance, and rotational stiffness of joints were obtained via monotonic loading tests. Test results indicated that all joints are characterized by compressive failure perpendicular to grain of Ludou. Additionally, it was found that greater LRGB leads to greater initial rotational stiffness and maximum moment of the joint by an increase of restraint length for beam end; however, offsetting dowels toward column resulted smaller stiffness and ultimate bending moment of joints, particularly, offsetting Beam-Gongmu dowels toward column changed the moment-rotation curve pattern of the beam-column joint, accompanied by a hardening stiffness at last phase. Furthermore, a simplified trilinear model was proposed to represent the moment-rotation relationship of the typical Tibetan timber beam-column joint.



Sign in / Sign up

Export Citation Format

Share Document