scholarly journals A STUDY ON TORSIONAL BEHAVIORS OF HIGH-DAMPING RUBBER BEARINGS WITH HYSTERETIC AND VISCOUS DAMPING MECHANISM BY TIME-HISTORY ANALYSIS UNDER BI-AXIAL SEISMIC WAVES

2012 ◽  
Vol 77 (678) ◽  
pp. 1247-1256
Author(s):  
Wataru SHIMOOKI ◽  
Haruyuki KITAMURA ◽  
Masashi SHIMOZONO ◽  
Nobuo MUROTA ◽  
Hideaki KATO
2013 ◽  
Vol 540 ◽  
pp. 69-78 ◽  
Author(s):  
Yong Li ◽  
Jin Jie Wang ◽  
Jing Bo Liu

Based on the nonlinear dynamic time history analysis, a multi-span RC highway bridge with high damping rubber bearings was studied, to investigate the damping ratio and seismic performance of the bridge and high damping rubber bearings compared with the rubber bearings. Results show that the application of high damping rubber bearings can reduce the seismic response of substructures of the bridge under longitudinal and transversal seismic excitations to some extent. But what is more important is that high damping rubber bearings wont suffer shear and displacement failure which may happen on rubber bearings. As a result, the pounding response and residual displacement can be dispelled.


2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Fabrizio Paolacci

This paper deals with the effectiveness of two isolation systems for the seismic protection of elevated steel storage tanks. In particular, the performance of high damping rubber bearings (HDRB) and friction pendulum isolators (FPS) has been analyzed. As case study, an emblematic example of elevated tanks collapsed during the Koaceli Earthquake in 1999 at Habas pharmaceutics plant in Turkey is considered. A time-history analysis conducted using lumped mass models demonstrates the high demand in terms of base shear required to the support columns and their inevitable collapse due to the insufficient shear strength. A proper design of HDRB and FPS isolator according to the EN1998 and a complete nonlinear analysis of the isolated tanks proved the high effectiveness of both isolation systems in reducing the response of the case tank. Actually, the stability conditions imposed by the code and a reduced level of convective base shear obtained with the second isolation typology suggests the use of FPS isolators rather than HDRB devices.


2020 ◽  
Vol 16 (1) ◽  
pp. 63-70
Author(s):  
Mariia Barabash ◽  
Bogdan Pisarevskyi ◽  
Yaroslav Bashynskyi

AbstractThe purpose of this paper is to justify that it is necessary to take account of physical and mechanical properties of soil and different materials of erected structure for damping vibrations in dynamic loads; to suggest tools for modelling the damping effect (natural or engineering induced) between foundation and soil. Certain technique is suggested for modelling behaviour of structure in time history analysis with account of material damping. In the software, the damping effect is modelled in two variants: Rayleigh damping (for structure) and finite element of viscous damping. When solving this problem, the following results were obtained: physical meaning of material damping is described; Rayleigh damping coefficients were computed through modal damping coefficients. Numerical analysis is carried out for the structure together with soil in earthquake load using developed FE of viscous damping. Time history analysis was carried out for the problem. Peak values of displacement, speed and acceleration at the floor levels were compared. Analysis results are compared (with and without account of material damping). Significant influence of damping on the stress-strain state of the structure is confirmed. Scientific novelty of the paper is in the following: the damping effect is proved to happen regardless of the presence of installed structural damping equipment; technique for account of damping with Rayleigh damping coefficients is developed; new damping element is developed – FE of viscous damping (FE 62), its behaviour is described as linear mathematical model. Practical implications of the paper: developed technique and new FE enables the user to carry out numerical analysis properly and work out a set of measures on seismic safety for buildings and structures.


Author(s):  
Fatima Zohra Baba-Hamed ◽  
Luc Davenne

The equivalent viscous damping is a key parameter in the prediction of the maximum nonlinear response. Damping constitutes a major source of uncertainty in dynamic analysis. This paper studies the effect of using viscous damping, on the reduction of the seismic responses of reinforced concrete RC frame buildings modeled as three-dimensional multi degree of freedom (MDOF) systems, and the use of nonlinear time history analysis as a method of visualized behavior of buildings in the elastic and inelastic range. This study focuses on the implications of the available modeling options on analysis. This article illustrates the effect of using the initial or tangent stiffness in Rayleigh damping in analysis of structures.  Correspondingly, this work is also concerned with the estimation of Rayleigh, mass-proportional or stiffness-proportional damping on engineering demand parameters (EDPs). As a result of a series of considerations, a damping modeling solution for nonlinear time history analysis (NLTHA) was carried out to compute the damage index. The application example is a building designed according to reinforced concrete code BAEL 91 and Algerian seismic code RPA 99/Version 2003 under seven earthquake excitations. The simulations demonstrated the accuracy and effectiveness of the proposed method to account for all of the above effects.


2019 ◽  
Vol 8 (4) ◽  
pp. 5973-5980

Construction industry is one of the most important factor for the development of the country. Precast buildings are one of the major development in construction technology, this technology helps to reduce the construction time and cost. Precast building construction is widely improved at present in India. The Growth of the precast building construction improved in large scale but construction and Design faults made the Precast buildings week in seismic areas. Due to seismic effect Beam column connections are very critical in Precast buildings ,Generally precast buildings are constructed with help connecting with proper joints of prefabricated elements. Designers are assumed that Beam-column connections are hinged one but in real time execution process the connections are Different from assumption. In present study we consider the three types of Beam-columns connections such as Rigid connection ,semi-Rigid connection and Hinged connections are developed in G+20 High rise building .These High rise building analysed with help of Time history analysis of High Seismic waves, Moderate Seismic waves and Low seismic waves .It helps to Identify the behaviour of connections and The results of Top Displacements , story Drifts and Inter storey Drifts are compared for the Different connections and Different Seismic waves.


Author(s):  
Fabrizio Paolacci

This paper deals with the effectiveness of two isolation system for the seismic protection of elevated steel storage tanks. In particular the performance of High Damping Rubber Bearings and Friction Pendulum isolators has been analyzed. As case study an emblematic example of elevated tanks collapsed during the Koaceli Earthquake in 1999 at Habas Pharmaceutics plant in Turkey has been considered. A time-history analysis conducted using lumped mass models demonstrated the high demand in terms of base shear required to the support columns and their inevitable collapse due to the insufficient shear strength. A proper design of HDRB and FPS isolator and a complete non-linear analysis of the isolated tanks proved the high effectiveness of both isolation systems in reducing the response of the case tank. Actually, a reduced level of displacements of isolators and a reduced level of convective base shear obtained with the second isolation typology, suggested the used of FPS isolators rather than HDRB.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Nidiasari Jati Sunaryati Eem Ikhsan

Struktur rangka baja pemikul momen merupakan jenis struktur baja tahan gempa yang populer digunakan. Daktilitas struktur yang tinggi merupakan salah satu keunggulan struktur ini, sehingga mampu menahan deformasi inelastik yang besar. Dalam desain, penggunaan metode desain elastis berupa evaluasi non-linear static (Pushover analysis) maupun evaluasi non-linear analisis (Time History Analysis) masih digunakan sebagai dasar perencanaan meskipun perilaku struktur sebenarnya saat kondisi inelastik tidak dapat digambarkan dengan baik. Metode Performance-Based Plastic Design (PBPD) berkembang untuk melihat perilaku struktur sebenarnya dengan cara menetapkan terlebih dahulu simpangan dan mekanisme leleh struktur sehingga gaya geser dasar yang digunakan adalah sama dengan usaha yang dibutuhkan untuk mendorong struktur hingga tercapai simpangan yang telah direncanakan. Studi dilakukan terhadap struktur baja 5 lantai yang diberi beban gempa berdasarkan SNI 1726, 2012 dan berdasarkan metode PBPD. Hasil analisa menunjukkan bahwa struktur yang diberi gaya gempa berdasarkan metode PBPD mencapai simpangan maksimum sesuai simpangan rencana dan kinerja struktur yang dihasilkan lebih baik .


Author(s):  
Fatemeh Jalayer ◽  
Hossein Ebrahimian ◽  
Andrea Miano

AbstractThe Italian code requires spectrum compatibility with mean spectrum for a suite of accelerograms selected for time-history analysis. Although these requirements define minimum acceptability criteria, it is likely that code-based non-linear dynamic analysis is going to be done based on limited number of records. Performance-based safety-checking provides formal basis for addressing the record-to-record variability and the epistemic uncertainties due to limited number of records and in the estimation of the seismic hazard curve. “Cloud Analysis” is a non-linear time-history analysis procedure that employs the structural response to un-scaled ground motion records and can be directly implemented in performance-based safety-checking. This paper interprets the code-based provisions in a performance-based key and applies further restrictions to spectrum-compatible record selection aiming to implement Cloud Analysis. It is shown that, by multiplying a closed-form coefficient, code-based safety ratio could be transformed into simplified performance-based safety ratio. It is shown that, as a proof of concept, if the partial safety factors in the code are set to unity, this coefficient is going to be on average slightly larger than unity. The paper provides the basis for propagating the epistemic uncertainties due to limited sample size and in the seismic hazard curve to the performance-based safety ratio both in a rigorous and simplified manner. If epistemic uncertainties are considered, the average code-based safety checking could end up being unconservative with respect to performance-based procedures when the number of records is small. However, it is shown that performance-based safety checking is possible with no extra structural analyses.


Sign in / Sign up

Export Citation Format

Share Document