scholarly journals ULTIMATE STRENGTH EVALUATION AND DYNAMIC BEHAVIOR OF ROOF TYPE SINGLE LAYER LATTICE SHELLS TO TRANSMIT SEISMIC LOADS TO TRUSS ARCH FRAMES

2013 ◽  
Vol 78 (683) ◽  
pp. 101-109 ◽  
Author(s):  
Koichiro ISHIKAWA ◽  
Chihiro MATSUSHITA
2001 ◽  
Vol 89 (14-15) ◽  
pp. 1671-1687 ◽  
Author(s):  
Yasushi Uematsu ◽  
Osamu Kuribara ◽  
Motohiko Yamada ◽  
Akihiro Sasaki ◽  
Takeshi Hongo

Author(s):  
Hiroaki Ogawa ◽  
Tomoki Takami ◽  
Akira Tatsumi ◽  
Yoshiteru Tanaka ◽  
Shinichi Hirakawa ◽  
...  

In this study, FE modeling method for the buckling/ultimate strength analysis of a continuous stiffened panel under combined shear and thrust is proposed. In order to validate the proposed method, shear buckling collapse tests of a stiffened panel and FEM analysis are carried out. As the result of these, it is confirmed that the buckling collapse behavior and the ultimate strength estimated by the proposed method are in good agreement with the test results.


Author(s):  
Siming Yuan ◽  
Qiang Chen

Titanium alloys are widely used in naval ships due to its high strength, low density, no magnetism, corrosion resistance and so on. However, the material nonlinearity brings new challenges to the ultimate strength evaluation on the Titanium structure. This work is to evaluate the ultimate strength for a stiffened titanium cylinder with consideration of material nonlinearity by numerical analysis and scaled model experiment. Firstly, a series of titanium alloy stiffened cylinder pressure hulls are analyzed for their ultimate strength by non-linear Finite Element Method (FEM). Secondly, model tests are carried out for the above titanium cylinders to obtain their ultimate carrying capacity. Thirdly, the good agreement between experiment and numerical results verify that the numerical simulation method is suitable for ultimate strength evaluation. Finally, some influential factors on the ultimate capacity of the stiffened titanium cylinder are investigated, including stiffeners arrangement, thickness of cylinder hulls, inside diameter. The research work can map the limitations of the current rules and to support the development of ultimate strength assessment guidelines for titanium cylinder pressure hulls.


Author(s):  
Keisuke Minagawa ◽  
Satoshi Fujita ◽  
Seiji Kitamura ◽  
Shigeki Okamura

This paper describes the dynamic strength evaluation of piping installed in nuclear power plants from a viewpoint of energy balance. Mechanical structures installed in nuclear power plants such as piping and equipment are usually designed statically in elastic region. Although these mechanical structures have sufficient seismic safety margin, comprehending the ultimate strength is very important in order to improve the seismic safety reliability in unexpected severe earthquakes. In this study, ultimate strength of a simple single-degree-of-freedom model is investigated from a viewpoint of energy balance equation that is one of valid methods for structural calculation. The investigation is implemented by forced vibration experiment. In the experiment, colored random wave having predominant frequency that is similar to natural frequency of the experimental model is input. Stainless steel and carbon steel are selected as material of experimental model. Excitation is continued until the experimental model is damaged, and is carried out with various input levels. As a result of the experiment, it is confirmed that input energy for failure increase with an increase of time for failure. Additionally it is confirmed that input energy for failure depend on the material.


Author(s):  
Naoto Kasahara ◽  
Takashi Wakai ◽  
Izumi Nakamura ◽  
Takuya Sato ◽  
Masakazu Ichimiya

Abstract As a lesson learned from the Fukushima nuclear power plant accident, the industry recognized the imporatance of mitigating accident consequences after Beyond Design Basis Events (BDBE). We propose the concept of applying fracture control to mitigate failure consequences of nuclear components under BDBE. Requirements are different between Design Basis Events (DBE) and BDBE. In the case of DBE, it requires preventing occurrence of failures, and thus, its structural approach is strengthening. On the other hand, BDBE requires mitigating failure consequences. The simple strengthening approach with DBE is inappropriate for this BDBE requirement. As the structural strengthening approach for mitigating failure consequences, we propose applying the concept of fracture control. The fundamental idea is to control the sequence of failure locations and modes. Preceding failures release loadings and prevent further catastrophic consequent failures. At the end, locations and modes of failure are limited. Absolute strength evaluation for each failure mode is not easy especially for BDBE. Fracture control, however, requires only relative strength evaluation among different locations and failure modes. Our paper discusses two sample applications of our proposed method. One is a fast reactor vessel under severe accident conditions. Our method controls the upper part of a vessel above the liquid coolant surface weaker than the lower part. This strength control maintains enough coolant even after a high pressure and high temperature condition causes failure of the reactor vessel because structural failure in the upper part releases internal pressure to protect the lower part. The other example is the piping under a large earthquake. Our proposal controls strength of supports weaker than the piping itself. When the supports fail first, natural frequencies of piping systems drop. When the natural frequencies of dominant modes are lower than the peak frequency of seismic loads, seismic loads hardly transfer to the piping and catastrophic failures such as collapse or break are avoided.


Sign in / Sign up

Export Citation Format

Share Document