scholarly journals BASIC STUDY ON THE THERMAL EXPANSION OF WATERPROOFING ROOF CONSTRUCTION MADE OF STAINLESS STEEL SHEET : Theoretical development of a linear formula and verification by computation using the finite element method(Materials and Construction)

2004 ◽  
Vol 10 (20) ◽  
pp. 31-34
Author(s):  
Haruo TOBITA
2019 ◽  
Vol 53 (3) ◽  
pp. 189-196
Author(s):  
Bhagyashree S. Jadhav ◽  
Ravindranath V. Krishnan ◽  
Vivek J. Patni ◽  
Girish R. Karandikar ◽  
Anita G. Karandikar ◽  
...  

Objective: To evaluate and compare the force and load deflection rate generated by differing unit displacement through 1 to 4 mm of springs that vary in design (Double Delta Closing Loop, Double Vertical T Crossed Closing Loop, Double Vertical Helical Closing Loop and Ricketts Maxillary Retractor), constituting wire materials (stainless steel and beta titanium), and wire dimensions (0.017" × 0.025" and 0.019" × 0.025"). Materials and methods: Computer-assisted design (CAD) model of the said loop springs was created and converted to the finite element method (FEM). The boundary conditions assigned were restraining anterior segment of the loops in all the 3 axes and displacement of the posterior segment progressively only along the x-axis in increments of 1, 2, 3, and 4 mm. Force and load deflection rate were calculated for each incremental displacement. Results: For all loop designs, force and load deflection rate increased with incremental displacement. Loop springs of beta titanium and 0.017" × 0.025" dimension showed lesser force and load deflection rate than those of stainless steel and 0.019" × 0.025", respectively. Ricketts Maxillary Retractor showed the least force and load deflection rate. Comparable force and load deflection values were found for 0.017" × 0.025" Double Vertical T Crossed Loop and 0.019" × 0.025" Double Vertical Helical Closing Loop. Conclusions: Variations in wire dimensions, materials, and designs have a profound effect on force and load deflection rate of the different loop springs studied.


Author(s):  
Dennis K. Williams

The mechanical roll expansion of heat exchanger tubes into tubesheets containing TEMA grooves, which are thought to aid in the mechanical integrity of the tube-to-tubesheet (TTT)joint, has for many years provided an acceptable means of completing a TTT joint. Inherent with the intentional roll expansion of the tube is the creation of a tensile residual stress field within the tube that is greatest in the transition region between the expanded and unexpanded zones of the tube. An additional complicating factor in the tube-to-tubesheet joint design is the choice of utilizing a seal weld or a “full strength” weld at the tube end in conjunction with a level of roll expansion quantified by the degree of tube wall reduction. This paper presents the results of an initial study of the mechanical roll expansion of 1 inch diameter tubes into a typical TEMA-R designed tubesheet, utilizing two grooves in the tubesheet hole. Two combinations of tube and tubesheet materials are studied that include duplex stainless steel tubes and tubesheet, while the second combination includes type 321 tubes roll expanded into a 2-1/4 Cr-1 Mo tubesheet, clad with 321 SS overlay. The predicted residual stress fields are calculated by the finite element method and employ a simplified two dimension nonlinear axisymmetric model.


1978 ◽  
Vol 57 (5-6) ◽  
pp. 715-723 ◽  
Author(s):  
K.W.J. Wright ◽  
A.L. Yettram

Stress analyses are presented for a second mandibular premolar with a class 1 amalgam restoration. The effects of amalgam setting and thermal expansions are examined. An axisymmetric representation of the structure is used and the analyses are carried out by the finite element method. Lined and unlined restorations are compared with regard to the principal stresses set up in the composite structures and also the patterns of deformation incurred. The effects of various enamel and dentin stiffness combinations are also considered.


Sign in / Sign up

Export Citation Format

Share Document