scholarly journals INFLUENCE OF WOOD DENSITY TO FIRE RESISTANCE OF THE LOAD-BEARING PART

2015 ◽  
Vol 21 (47) ◽  
pp. 151-156
Author(s):  
Hirokazu OHASHI ◽  
Tsutomu NAGAOKA ◽  
Hiroki NAGAMORI ◽  
Hiromu TAKAHASHI ◽  
Masato YAMAMOTO ◽  
...  
2018 ◽  
Vol 9 (2) ◽  
pp. 126-137
Author(s):  
Hirokazu Ohashi ◽  
Shinya Igarashi ◽  
Tsutomu Nagaoka

Purpose As forestry contributes to the reduction of greenhouse gases by CO2 fixation, in recent years, use of wood in buildings has attracted all over the world more attention. However, construction of large wood structures is almost inexistent within urban areas in Japan. This is due to the Japanese law on fire protection of wood buildings in cities, which is considered very strict with severe requirements. This paper aims to present a research work relative to the development of one-hour fire-resistant wood structural elements for buildings in cities. The developed elements are composed of three layers made of laminated timber. Design/methodology/approach These wood structural elements, made of glued laminated timber with self-charring-stop, have sufficient fire resistance during and after a fire and comply with the strict Japanese standard for wood structural elements, which stipulates that such elements have to withstand the whole dead-load of concerned buildings after fire. To comply with such requirements, new elements of glued laminated timber with self-charring-stop layer were developed, and their performance was confirmed. Several fire-resistant tests conducted on columns, beams, column-beam joints, connections between beams and walls and beams with holes were carried out. Findings All tests proved that the elements have sufficient fire resistance. No damage was found out at the load-bearing part of the elements after testing. As the developed elements have two layers protecting the load-bearing part, the temperature in the load-bearing part could be retained below 260°C (carbonization temperature) and provide the elements with a sufficient fire resistance for 1 h. Practical implications These wood structural elements have already been applied in six projects, where large-size wooden buildings were constructed in urban areas in Japan. Originality/value The proposed structural elements use a novel technique. Every wooden element is composed of three layers made of glued laminated timber. The elements have a typical performance of self-charring-stop after fire without need for water of firefighters. More technologies related to these elements, including column-beam joints and beams with holes and effect of crack, were also developed to design and construct safe wooden buildings.


2012 ◽  
Vol 628 ◽  
pp. 156-160
Author(s):  
In Kyu Kwon ◽  
Hyung Jun Kim ◽  
Heung Youl Kim ◽  
Bum Yean Cho ◽  
Kyung Suk Cho

Structural steel has been used since the early 1970’s in Korea as primary structural members such as columns, beams, and trusses. The materials have much higher strength such as fast construction, high load bearing capacity, high construction quality but those have a fatal weakness as well. Load-bearing capacity is going down when the structural members are contained in fire condition. Therefore, to protect the structural members made of steels from the heat energy the fire resistance performance required. Generally, the fire resistance performance have evaluated from the exact fire tests in fire furnaces. But the evaluation method takes much more time and higher expenses so, the engineering method requires. The engineering method not only adopts a science but also an engineering experience. In this paper, to make various data-bases for evaluation of structural members such as columns(H-section, RHS), beams, loaded fire tests were conducted and derived not only each limiting temperature but also fire resistance respectively.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1331-1336
Author(s):  
Jin Sheng Han ◽  
Ke Wei Chu ◽  
Gao Chao Lv ◽  
Shen Li

The fire resistance ability of load-bearing column of building structure under fire is an important aspect affecting the safety of the structure. Although a large number of research results have been achieved in this respect, the researches on the numerical analysis of the bearing capacity and deformation process at high temperature are still not sufficient. The numerical simulation of the bearing capacity and deformation process at high temperature is hard to carry out and complex to operate, and not practical as well. Therefore, simplified analysis method is adopted to analyze the deformation and internal force of the controlling section of the load-bearing column subjected to fire. Besides, taking the concrete filled circular steel tubular column as example, the basic analysis theory of the fire resistance and the deformation performance of columns subjected to constant load is presented. The numerical calculation program which is developed on the basis of this theory can well simulate the process of deformation and the fire resistance of the columns subjected to fire. The simulation results are in good agreement with the experimental results.


2021 ◽  
Vol 920 (1) ◽  
pp. 012009
Author(s):  
M K Yew ◽  
M C Yew ◽  
J H Beh ◽  
L H Saw ◽  
Y L Lee ◽  
...  

Abstract Concrete is widely used in the industry due to its effectiveness in terms of cost and strength. In this study, the introduction of bio-based aggregate as coarse aggregate in lightweight foam concrete will be investigated to find a better solution for fire incidents that are commonly happened. As such, lightweight foam concrete (LWFC) has been applied in many buildings especially in non-load bearing wall to enhance thermal conductivity, sound insulation and fire resistance. The aim of this research is to investigate the effect of incorporating bio-based aggregate namely oil palm shell (OPS) into lightweight form concrete in terms of strength properties and fire resistance. Three different concrete mix was designed containing different percentage of OPS aggregate replacement (0, 5, 10 and 15%). From the result, the compressive strength of the LWFC-CTR mixture had achieved the highest compressive strength at 28-day, which is recorded at 3.82 MPa. The fire resistance of LWFC-OPS 15% had showed a positive outcome with improvement by almost 23.5% compared to control mix at 15 minutes. Therefore, the major finding of this research is the incorporation of eco-friendly OPS aggregate has improved the fire resistance of lightweight foam concrete, which can be used as an alternative solution for non-load bearing walls.


Author(s):  
Petr Kuklík ◽  
Magdaléna Charvátová

The paper is focused on the influence of fire resistant coatings used on OSB boards on the fire resistance of entire light timber frame wall assemblies. Two fire tests were performed in the fire test laboratory of PAVUS, a.s. in Veselí nad Lužnicí. The fire tests were performed on a load bearing wall. The wall dimensions were 3.0 (depth) x 3.0 (height) m. According to EN 1995-1-2, the calculation for fire paints and coatings is not possible. The aim of the paper is the determination of the influence of this type of coating on the OSB board’s charring rate, the determination of the start of charring of a timber stud and the fire resistance of the whole construction.


Author(s):  
Geralt Siebert

<p>An essential element of fire protection, in addition to the appropriate design of load‐bearing components (fire resistance), is the subdivision of buildings into fire compartments. In modern architecture is a demand for transparent fire‐resistant components, which are then made of glass. Verifications of the load‐bearing capacity against static loads such as wind usually are done by calculation whereas fire resistance is proofed by tests. In most cases, fire‐resistant glass has no further proof, transparent glass components are either classified for fire or to meet other special requirements such as fall protection (e.g. for floor‐ceiling façade elements) or “walk‐ on”. The paper gives an overview about the possibilities to fulfill the requirements for static glass design (including fall protection and walk‐on element) as well as for fire protection, respectively. To complete the picture, examples of realized projects are presented. For several types of vertical and horizontal fire‐protective glazing, testing to verify impact resistance were carried out. For a walk‐on‐overhead‐glazing installed in a subway station testing in a furnace against fire and in laboratory against walking people was done.</p>


Author(s):  
Vasily Prusakov ◽  
Marina Gravit ◽  
Andrey Pekhotikov ◽  
Vladimir Pavlov

Правильное проектирование, устройство и монтаж деформационных швов дают возможность обеспечить длительный срок службы основных несущих и ограждающих конструкций зданий, а также элементов внутренней и внешней отделки. Огнестойкие заполнения устанавливают для компенсации возможных изменений ширины шва от первоначальной ширины в горизонтальные и вертикальные деформационные швы монолитных и сборных железобетонных конструкций зданий и сооружений различного назначения, а также в зазоры между торцом вертикальных стен и межэтажных перекрытий. Для защиты деформационных швов в конструкциях зданий и сооружений от воздействия пожара применяются огнестойкие заделки. В европейских нормативных документах такие противопожарные барьеры специально разрабатываются для применения в деформационных швах и работают при сжатии, растяжении и сдвиге шва. В России изделия и материалы, выполняющие функцию противопожарного барьера, не испытываются в условиях знакопеременной нагрузки. В статье приведена методика испытаний на огнестойкость для деформационного шва в железобетонной конструкции. Получены результаты по параметрам целостности и теплоизолирующей способности для железобетонных плит с последующим в сторону увеличения ширины зазора между плитами и сдвига их относительно друг друга на +25 % составляет не менее 245 мин.Buildings and structures of complex architectural forms and large extent are subject to deformations under the influence of fluctuations in the temperature of the outside air, uneven sedimentation of the soil base, seismic phenomena and other causes. To prevent cracks in bearing and fencing structures, expansion joints are provided that cut the building into compartments. Proper design, construction and execution of expansion joints are of great importance in construction, as they provide the opportunity to provide long service life and fire resistance of the main load-bearing and enclosing structures of buildings, internal and external finishes. Normative requirements for the device and technical parameters of fire protection of expansion joints do not currently exist, and since the expansion joints are elements of load-bearing and enclosing structures, their fire resistance is determined in conjunction with the rest of the elements of fire protection barriers, use and application is regulated by the norms of Russian federal legislation. To increase the overall fire resistance of the construction, special fire barriers are used, which are installed inside the expansion joints. The article presents an overview of the fire barriers of expansion joints of both foreign and domestic producers. It is shown that for the protection of expansion joints in a fire, fire barriers are used, specially designed for use in expansion joints, which are guaranteed to work with compression, stretching and shear. It has been established that the production of innovative fire-retardant materials is one of the main tasks of fire safety. This is also the way of the consistent transformation of the idea into a product that passes through the stages of research, design development, production and realization in civil and industrial buildings. It is necessary to choose a comprehensive solution that ensures the maximum satisfaction of the requirements when performing fire protection work to protect the expansion joint when exposed to a fire. The authors declare that the structures (products) intended for fire protection of the expansion joint should provide a stable own mechanical tensile strength of at least 40%; at least 50% compression; for a shift of not less than 20%, the retention of elastic properties at the manufacturer’s declared maximum tensile-compressive stress per product of not less than 100 cycles. After the test, the structure (article) should not have mechanical damages and deformation of the filler, as well as the manufacturer’s declared fire resistance tested with at least 20% expansion from the design width of the expansion joint. When using other fillers for the fire barrier, it is recommended that the above requirements should be met using material that provides deformation characteristics, both in the compression of the joint and during its stretching, and in the shear, during the entire period of the intended use. Particular attention should be paid to the technology of interfacing the structures (products) of fire barriers when they are installed in expansion joints along the entire length, which is guaranteed to prevent the appearance of technological gaps and voids.


Sign in / Sign up

Export Citation Format

Share Document