scholarly journals Fire resistance of lightweight foam concrete by incorporating lightweight bio-based aggregate

2021 ◽  
Vol 920 (1) ◽  
pp. 012009
Author(s):  
M K Yew ◽  
M C Yew ◽  
J H Beh ◽  
L H Saw ◽  
Y L Lee ◽  
...  

Abstract Concrete is widely used in the industry due to its effectiveness in terms of cost and strength. In this study, the introduction of bio-based aggregate as coarse aggregate in lightweight foam concrete will be investigated to find a better solution for fire incidents that are commonly happened. As such, lightweight foam concrete (LWFC) has been applied in many buildings especially in non-load bearing wall to enhance thermal conductivity, sound insulation and fire resistance. The aim of this research is to investigate the effect of incorporating bio-based aggregate namely oil palm shell (OPS) into lightweight form concrete in terms of strength properties and fire resistance. Three different concrete mix was designed containing different percentage of OPS aggregate replacement (0, 5, 10 and 15%). From the result, the compressive strength of the LWFC-CTR mixture had achieved the highest compressive strength at 28-day, which is recorded at 3.82 MPa. The fire resistance of LWFC-OPS 15% had showed a positive outcome with improvement by almost 23.5% compared to control mix at 15 minutes. Therefore, the major finding of this research is the incorporation of eco-friendly OPS aggregate has improved the fire resistance of lightweight foam concrete, which can be used as an alternative solution for non-load bearing walls.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Noridah Mohamad ◽  
A. I. Khalil ◽  
A. A. Abdul Samad ◽  
W. I. Goh

This paper presents the structural behaviour of precast lightweight foam concrete sandwich panel (PFLP) under flexure, studied experimentally and theoretically. Four (4) full scale specimens with a double shear steel connector of 6 mm diameter and steel reinforcement of 9 mm diameter were cast and tested. The panel’s structural behavior was studied in the context of its ultimate flexure load, crack pattern, load-deflection profile, and efficiency of shear connectors. Results showed that the ultimate flexure load obtained from the experiment is influenced by the panel’s compressive strength and thickness. The crack pattern recorded in each panel showed the emergence of initial cracks at the midspan which later spread toward the left and right zones of the slab. The theoretical ultimate load for fully composite and noncomposite panels was obtained from the classical equations. All panel specimens were found to behave in a partially composite manner. Panels PLFP-3 and PLFP-4 with higher compressive strength and total thickness managed to obtain a higher degree of compositeness which is 30 and 32.6 percent, respectively.


2017 ◽  
Vol 36 (3) ◽  
pp. 691-696
Author(s):  
EE Ikponmwosa ◽  
SO Ehikhuenmen

This paper reports the findings on an experimental investigation of the effect of partial replacement of coarse aggregate with ceramic waste on strength properties of concrete. Compressive strength tests were conducted using 150x150x150mm cube specimens, while tensile strength was investigated using 150x300mm cylinder specimens. Results of tests show that workability, density, compressive and flexural strength of concrete decreased with increase in ceramic waste content. The compressive strength at 90 days curing age for the control sample was 24.67 N/mm2. Compressive strength values at 90 days curing age for  25%, 50% and 75% replacement levels were 21.78 N/mm2, 19.85 N/mm2and 17.85 N/mm2 respectively. The decrease in density and strength was due to ceramic waste being lighter and more porous than normal coarse aggregate. Tensile strength of concrete with ceramic waste decline gradually from 8.39 N/mm2 to 6.13 N/mm2 for the control and 75% replacement samples respectively. This could be attributed to the water absorption capacity and external porcelain nature of the waste material. A production cost savings of 10.7% for 1:2:4 concrete mix was noted at 75% replacement level. This study concludes that ceramic waste could be used for both structural and non-structural works and recommends that beyond 75% replacement level, ceramic waste material should not be used in concrete structures where strength is the major consideration. http://dx.doi.org/10.4314/njt.v36i3.5


Author(s):  
Shakir Hussain

Abstract: Polymer waste volumes have surged in recent years as a result of growing industrialization and fast improvements in living standards. In Malaysia, the majority of polymer waste is discarded rather than recycled. This circumstance results in major issues such as waste of natural resources and pollution of the environment. Polymer products, such as synthetic fibres, plastics, and rubber, are petrochemical compounds that disintegrate slowly in nature. Even after a long amount of time, plastic materials are not easily biodegradable. In reality, a wide range of waste materials can be used as a cement matrix inert. For the manufacture of the polymer concrete, trash bag plastics were employed as polymer wastes HDPE in this study (PC). The purpose of this research is to investigate the characteristics and characterisation of polymer HDPE as a coarse aggregate replacement in concrete. Temperatures of 160°C, 170°C, 180°C, 190°C, and 200°C were used in the heating procedure. By volumetric approach, five compositions of coarse aggregate with varied crushed stone: HDPE waste ratios of 0:100, 15:85, 30:70, 45:55, and 60:40 were utilised. The use of polymerwaste as coarse aggregate in traditional concrete was examined. With fresh and hardened concrete tests, the effects of polymer wastes on the workability and strength of the concrete were investigated. After 28 days, the compressive strength of the PCwas determined to be suitable for nonstructural use. The findings of the cost research revealed that the PC is more cost effective than traditional concrete. Keywords: Polymer Wastes HDPE; Coarse Aggregate; Compressive Strength; Properties


Aggregates used in concrete are fast depleting natural resource and the quarrying of which is causing environmental issues. Hence, the use of aggregate from alternate sources such as from waste discarded glass, from foundry sand discarded after metal casting process and sea shells is investigated. Compressive strength of concrete with glass powder, foundry sand and sea shell is studied individually. Concrete is cast with glass powder and foundry sand as 5%, 10%, 15% and 20% replacement of fine aggregate and with sea shell as 5%, 10%, 15% and 20% replacement of coarse aggregate individually. It is observed that compressive strength of concrete decreases with glass powder, foundry sand, and sea shell. Fine aggregate replaced by 10% glass powder, 10%, foundry sand and coarse aggregate replaced by 10% sea shell have the least decrease in strength when compared to control concrete mix.


Author(s):  
S.E Ubi ◽  
P.O Nkra ◽  
R.B Agbor ◽  
D.E Ewa ◽  
M. Nuchal

This present research was on the comparison of the efficacious use of basalt and granite as coarse aggregates in concrete work. In order to obtain the basis for comparison, physical and structural tests were conducted on the different materials of the concrete and the concrete samples respectively. Physical test results revealed that basalt have a specific gravity of 2.8 and 2.5, while granite have a specific gravity of 2.9 and 2.6. In density, basalt have a density of 1554.55kg/m3 while granite had a density of 1463.64kg/m3. Aggregate impact test conducted on both aggregates revealed a percentage of 11.05% for basalt and 12.63% for granite. The following structural tests were carried out: compressive strength tests, flexural and tensile strength test and the comparative results are as follows. Compressive strength for basalt 36.39N/mm2 while 37.16N/mm2 for granite. 24.81N/mm2 tensile strength for basalt while 12.57N/mm2 for granite, 31.83N/mm2 flexural strength for basalt while 27.97N/mm2 for granite. From the above results, it can be deduced that basalt has higher strength properties than granite. Therefore, more suitable for coarse aggregate in achieving higher strength with some quantity of other composition of the concrete mix when compared to granite.


2013 ◽  
Vol 368-370 ◽  
pp. 1090-1094
Author(s):  
Yuan Xu ◽  
Xiao Ping Wang ◽  
Juan Cheng ◽  
Dong Wang

Study four factors - water consumption , water-cement ratio , recycled fine aggregate replacement ratio of recycled coarse aggregate replacement rate - affect the regularity of the load-bearing hollow block compressive strength of recycled concrete by orthogonal test method , the test showed that , water consumption factors affect the compressive strength of recycled concrete block design with than the emphasis on the control of water consumption . Under the test conditions , the optimum mixture ratio of recycled concrete load-bearing block : water consumption of 160 kg / m 3 , the water cement ratio 0.45 , recycled fine aggregate replacement ratio of 30% recycled coarse aggregate replacement ratio of 30% .


2014 ◽  
Vol 665 ◽  
pp. 147-150 ◽  
Author(s):  
Ping Hua Zhu ◽  
Yi Lei

The strength properties of recycled aggregate concrete (RAC) using aggregates from repeatedly recycling concrete waste were studied. The relationships between cube compressive strength and splitting tensile strength and between each strength and replacement ratio of recycled aggregate to natural aggregate were established. The results showed that the strength properties of RAC with the design strength of 30MPa can be satisfied when the quality of recycled coarse and fine aggregates met respectively the needs of Grade II in GB/T25177-2010 and Grade III in GB/T25176-2010, with the replacement ratio to natural coarse aggregate and natural fine aggregate no more than 70% and 50%. Both strengths decreased and then increased for a while before descending again with increasing replacement ratio of recycled coarse aggregate, and decreased continuously with the increase of replacement ratio of recycled fine aggregate. The relationship between cube compressive strength and splitting tensile strength of RAC was found to be exponential function.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 831
Author(s):  
Suresh G ◽  
Harishankar S

The ceramic waste is used as a coarse aggregate replacement in concrete is a two way beneficial process that involves minimization of resources for construction and processing of hazardous industrial wastes that cannot be recycled. The ceramic waste obtained from waste dismantled building were used as coarse aggregate 10%, 20%, 30%, 40% and 50% replacement.  To improve the mechanical properties silica fume is added as admixture in the concrete. The optimum percentage replacement was obtained considering the strength as well as the objective of using ceramic waste aggregate. The compressive strength of concrete cubes were tested . The compressive strength of aggregate replaced concrete has been compared to that of conventional concrete and the results are evaluated. 


2017 ◽  
Vol 902 ◽  
pp. 65-73 ◽  
Author(s):  
Elly Tjahjono ◽  
Ayudia M. Fani ◽  
Dodorus D. Dodi ◽  
Erinda P. Purnamasari ◽  
Feny A. Silaban ◽  
...  

The concrete technology has been growing significantly since years ago especially in Indonesia’s construction. Therefore, Indonesia needs new innovation of concrete technology to solve the problem for the availability of concrete material. Indonesia is known as the largest producer of crude palm oil (CPO) in the world. Oil palm shell (OPS) is one of the solid wastes produced in crude palm oil industry that can be used as concrete materials. This paper presents the experimental results of a research project to produce structural lightweight concrete using oil palm shell (OPS), as a coarse aggregate. This experimental was investigating the effects of adding silica fume, fly ash, and superplasticizer for the compressive strength and flexural strength of the OPS lightweight concrete. It was found that OPS lightweight concrete has compressive strength up to 23.90 MPa in 28-days and flexural strength up to 2.54 MPa in 28-days. This experimental concluded that OPS lightweight concrete has a good potential as a lightweight coarse aggregate and low-cost housing construction in Indonesia.


Author(s):  
Ari Sri Wahyuni ◽  
Chundakus Habsya ◽  
Ernawati Sri Sunarsih

<p>The purposes of this research were to, (1) determine the influence of rice husk ash as smooth aggregate partial substitute and foam variation towards compressive strength, density, and absorption of lightweight foam concrete brick, (2) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the compressive strength which fulfilled SNI No. 03 – 0349 – 1989, (3) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the density lightweight concrete which fulfilled SNI No. 03 – 0349 – 1989, (4) determine the percentage of rice husk ash as smooth aggregate partial substitute and foam variation to achieve the absorption which fulfilled SNI No. 03 – 0349 – 1989, (5) produce course material supplement of concrete technology on the influence of using rice husk ash in lightweight foam concrete brick toward compressive strength, density, and absorption. <br />This research used experimental method and data analysis techniques used regression analysis. Variables in the study were (1) dependent variables: compressive strength, density, and absorption of lightweight foam concrete bricks, (2) independent variables: the substitute of smooth aggregate to rice husk ash with variation 0%, 25%, 35%, and 45% and foam variation 0,2 and 0,3 of concrete volume.<br />Based on the results of the study concluded that, (1) variation of rice husk ash and foam was strongly influence towards the compressive strength, density, and absorption of lightweight foam concrete bricks, (2) There was no percentage of rice husk ash and foam to achieve the compressive strength of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (3) All percentages of rice husk ash and foam variation produced the density value of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (4) All percentages of rice husk ash and foam variation produced the absorption value of lightweight foam concrete brick which fulfilled SNI No. 03 – 0349 – 1989, (5) the output course materials was a course materials supplement about the influence of the use rice husk ash as partly smooth agregate substitute of lightweight foam concrete brick to compressive strength, density, and absorption.</p><p>Keywords: rice husk ash, foam, lightweight foam concrete bricks.</p><span><span><br /></span></span>


Sign in / Sign up

Export Citation Format

Share Document