scholarly journals TENDENCY IN STRUCTURAL ELEMENTS OF BUILDINGS FOCUSED ON REINFORCED CONCRETE SLAB WITH BEAMS

2020 ◽  
Vol 26 (62) ◽  
pp. 37-42
Author(s):  
Nagayoshi SOU ◽  
Yoshihisa NAKATA ◽  
Kazuki TAJIMA ◽  
Takumi ARAMAKI ◽  
Atsunori MIYATA ◽  
...  
2019 ◽  
Vol 25 (61) ◽  
pp. 1051-1056
Author(s):  
Nagayoshi SOU ◽  
Yoshihisa NAKATA ◽  
Kazuki TAJIMA ◽  
Atsunori MIYATA ◽  
Takumi ARAMAKI ◽  
...  

2019 ◽  
Vol 281 ◽  
pp. 02003 ◽  
Author(s):  
Ali Jahami ◽  
Yehya Temsah ◽  
Ossama Baalbaki ◽  
Mohamad Darwiche ◽  
Youmn Al-Rawi ◽  
...  

Lebanon is one of the countries which are at high risk of experiencing rock falls. In order to ensure public safety, engineers must take into consideration this risk. In the past years, numerous researches were conducted on the behavior of horizontal structural elements, slabs, of different types under dynamic impact load. Reinforced concrete flat slabs are commonly used slabs in residential buildings. To build a profound understanding of the structural behavior of the slabs under such loadings, it is important to investigate the effect of energy dissipation on the equivalent impact force, mid-span deflection and damage pattern. In this study a sample reinforced concrete slab of 500 x 1000 x 100 mm dimensions is considered. The aim of this paper is to find how these factors vary with the increase in energy as the drop load resembling the real rock fall is left to drop freely from different heights 0.6 m and 1 m.


2020 ◽  
Vol 3 (4) ◽  
pp. 216-228
Author(s):  
K. Senthil ◽  
Iwansh Gupta ◽  
S. Rupali ◽  
Loizos Pelecanos

An explosion on the elevated structures caused by terrorist activities or manmade events can induce significant deformations in the Civil Engineering structures. Therefore, it is necessary to review the response of the structural behavior such as reinforced concrete slab, reinforced concrete beams, and columns. On the basis of this objective, a detailed literature review is conducted to understand the scope for protecting such structures and the structural behavior under blast loading. Based on the detailed literature survey, the investigations about the behavior of conventional reinforced concrete columns and slab initiated in 2005 however, the behavior of reinforced concrete beam was focused since the year 2010. Also, the literature reveals that the investigations on structural elements using analytical techniques are limited in comparison to experiments and simulations. In addition to that, the response of the structural elements was predicted and the trend was calibrated and fitted logarithmically with the experimental results. The predicted spall diameter in the reinforced concrete slab is 0.95 m corresponding charge weight of 100 kg however the influence of spalling was found to be negligible after the 100 kg of charge weight. The predicted spall length in the reinforced concrete beam is 1.6 m corresponding charge weight of 100 kg and the effect may be negligible after 100 kg of charge weight. The predicted deflection in the reinforced concrete columns is 30 mm corresponding to a peak reflected impulse of 1000 MPa-ms, whereas the deflection was found to be negligible after the 1000 MPa-ms of peak reflected impulse.


Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


1985 ◽  
Vol 50 ◽  
Author(s):  
A. Atkinson ◽  
D. J. Goult ◽  
J. A. Hearne

AbstractA preliminary assessment of the long-term durability of concrete in a repository sited in clay is presented. The assessment is based on recorded experience of concrete structures and both field and laboratory studies. It is also supported by results of the examination of a concrete sample which had been buried in clay for 43 years.The enoineering lifetime of a 1 m thick reinforced concrete slab, with one face in contact with clay, and the way in which pH in the repository as a whole is likely to vary with time have both been estimated from available data. The estimates indicate that engineering lifetimes of about 103 years are expected (providing that sulphate resisting cement is used) and that pH is likely to remain above 10.5 for about 106 years.


2014 ◽  
Vol 606 ◽  
pp. 229-232 ◽  
Author(s):  
Petr Tej ◽  
Vítězslav Vacek ◽  
Jiří Kolísko ◽  
Jindřich Čech

The paper focuses on a computer nonlinear analysis of the formation and development of cracks in a concrete slab exposed to a uniform continuous load on the lower surface. The analysis is based on an actual example of the formation and development of cracks in a basement slab exposed to ground water buoyancy.


Sign in / Sign up

Export Citation Format

Share Document