Coastal-Change and Glaciological Map of the Larsen Ice Shelf Area, Antarctica, 1940-2005

2008 ◽  
Polar Record ◽  
1987 ◽  
Vol 23 (146) ◽  
pp. 577-583 ◽  
Author(s):  
J. G. Ferrigno ◽  
W. G. Gould

ABSTRACTNoaa Avhrr and Landsat MSS imagery acquired between January and November 1986 has shown substantial changes in the Antarctic coastline near the Filchner Ice Shelf, Larsen Ice Shelf and Thwaites Glacier. In the Filchner Ice Shelf area some 11,500 km of ice calved from mid-April onward. In the Larsen Ice Shelf area two large bergs calved between February and August. The combined volume of ice from these two events equals approximately three years' normal calving from the entire Antarctic coastline. In the Thwaites Glacier area several changes appear to have occurred at the base of Thwaites Iceberg Tongue and Thwaites Glacier Tongue.


1994 ◽  
Vol 20 ◽  
pp. 6-12
Author(s):  
Pedro Skvarca

Two uncontrolled mosaics were assembled at an ~1 : 1000 000 scale, covering for the first time almost the entire Larsen Ice Shelf area, using Landsat TM images of 1986-89 and the Kosmos KATE-200 photographic products of late 1975. By comparing them, it was possible to estimate the change along the 600 km north-south ice-shelfs seaward margin where substantial calving has occurred in the recent past. In overall extent, the ice shelf has decreased by ~9300km2 since 1975. The interpretation of the available satellite data also allowed estimates of the ice-shelf’s inland boundary and detection of new surface ice features, especially in the very disturbed region south of Jason Peninsula, which may help to explain the significant calving events occurring in this region. Estimates of surface velocities were derived by photographically co-registering sequential imagery in the chaotic rifted-crevassed area east of Kenyon Peninsula, where conspicuous ice features could be clearly detected even after a 10.4 year time interval. The Landsat TM mosaic, though uncontrolled, provides a basic data set for future studies of global change of the major ice shelf on the Antarctic Peninsula which is probably very sensitive to any climatic trend.


1994 ◽  
Vol 20 ◽  
pp. 6-12 ◽  
Author(s):  
Pedro Skvarca

Two uncontrolled mosaics were assembled at an ~1 : 1000 000 scale, covering for the first time almost the entire Larsen Ice Shelf area, using Landsat TM images of 1986-89 and the Kosmos KATE-200 photographic products of late 1975. By comparing them, it was possible to estimate the change along the 600 km north-south ice-shelfs seaward margin where substantial calving has occurred in the recent past. In overall extent, the ice shelf has decreased by ~9300km2 since 1975. The interpretation of the available satellite data also allowed estimates of the ice-shelf’s inland boundary and detection of new surface ice features, especially in the very disturbed region south of Jason Peninsula, which may help to explain the significant calving events occurring in this region. Estimates of surface velocities were derived by photographically co-registering sequential imagery in the chaotic rifted-crevassed area east of Kenyon Peninsula, where conspicuous ice features could be clearly detected even after a 10.4 year time interval. The Landsat TM mosaic, though uncontrolled, provides a basic data set for future studies of global change of the major ice shelf on the Antarctic Peninsula which is probably very sensitive to any climatic trend.


2002 ◽  
Vol 48 (163) ◽  
pp. 552-558 ◽  
Author(s):  
Marjorie Schmeltz ◽  
Eric Rignot ◽  
Todd K. Dupont ◽  
Douglas R. MacAyeal

AbstractWe use a finite-element model of coupled ice-stream/ice-shelf flow to study the sensitivity of Pine Island Glacier, West Antarctica, to changes in ice-shelf and basal conditions. By tuning a softening coefficient of the ice along the glacier margins, and a basal friction coefficient controlling the distribution of basal shear stress underneath the ice stream, we are able to match model velocity to that observed with interferometric synthetic aperture radar (InSAR). We use the model to investigate the effect of small perturbations on ice flow. We find that a 5.5–13% reduction in our initial ice-shelf area increases the glacier velocity by 3.5–10% at the grounding line. The removal of the entire ice shelf increases the grounding-line velocity by > 70%. The changes in velocity associated with ice-shelf reduction are felt several tens of km inland. Alternatively, a 5% reduction in basal shear stress increases the glacier velocity by 13% at the grounding line. By contrast, softening of the glacier side margins would have to be increased a lot more to produce a comparable change in ice velocity. Hence, both the ice-shelf buttressing and the basal shear stress contribute significant resistance to the flow of Pine Island Glacier.


2021 ◽  
Author(s):  
Zhongyang Hu ◽  
Peter Kuipers Munneke ◽  
Stef Lhermitte ◽  
Maaike Izeboud ◽  
Michiel van den Broeke

<p>Presently, surface melt over Antarctica is estimated using climate modeling or remote sensing. However, accurately estimating surface melt remains challenging. Both climate modeling and remote sensing have limitations, particularly in the most crucial areas with intense surface melt.  The motivation of our study is to investigate the opportunities and challenges in improving the accuracy of surface melt estimation using a deep neural network. The trained deep neural network uses meteorological observations from automatic weather stations (AWS) and surface albedo observations from satellite imagery to improve surface melt simulations from the regional atmospheric climate model version 2.3p2 (RACMO2). Based on observations from three AWS at the Larsen B and C Ice Shelves, cross-validation shows a high accuracy (root mean square error = 0.898 mm.w.e.d<sup>−1</sup>, mean absolute error = 0.429 mm.w.e.d<sup>−1</sup>, and coefficient of determination = 0.958). The deep neural network also outperforms conventional machine learning models (e.g., random forest regression, XGBoost) and a shallow neural network. To compute surface melt for the entire Larsen Ice Shelf, the deep neural network is applied to RACMO2 simulations. The resulting, corrected surface melt shows a better correlation with the AWS observations in AWS 14 and 17, but not in AWS 18. Also, the spatial pattern of the surface melt is improved compared to the original RACMO2 simulation. A possible explanation for the mismatch at AWS 18 is its complex geophysical setting. Even though our study shows an opportunity to improve surface melt simulations using a deep neural network, further study is needed to refine the method, especially for complicated, heterogeneous terrain.</p>


1961 ◽  
Vol 3 (29) ◽  
pp. 873-878
Author(s):  
Charles R. Wilson ◽  
A. P. Crary

The volume of ice that flows annually from the Skelton Glacier on the west side of the Ross Ice Shelf between the Worcester and Royal Society Ranges was determined during 1958–59 traverse operations to be approximately 791 × 106 m.3 or 712 × 106 m.3 water equivalent. Annual accumulation on the Skelton névé field and small cirque glaciers is estimated to be 1,018 × 106 m.3 water equivalent, but this figure can be reduced to 712 × 106 m.3 by assuming that 30 per cent of the expected accumulation in the lower slopes of the glacier is lost to adjacent areas of the Ross Ice Shelf by katabatic winds. It is evident that little or no contribution to the nourishment of the Skelton Glacier comes from the high plateau area of East Antarctica. It is suggested that this condition exists generally in the western Ross Sea and Ross Shelf area, and is responsible for the existence of the present “dry” valleys in the McMurdo Sound area.Some estimates of local ice regime are made at two sites on the glacier where ice thickness and strain rates are known.


Sign in / Sign up

Export Citation Format

Share Document