scholarly journals Groundwater management process simulations using an updated version of the three-dimensional numerical model of groundwater flow in northern Utah Valley, Utah County, Utah

Author(s):  
Bernard J. Stolp ◽  
Lynette E. Brooks
2021 ◽  
Author(s):  
Audrey Woo ◽  
Jeffrey McKenzie ◽  
Sean Carey

<p>Groundwater flow and exfiltration (discharge) in Arctic and Subarctic mountain regimes is poorly understood yet plays an important role in areas underlain by continuous and discontinuous permafrost. Permafrost, ground with a perennial temperature below 0°C, acts as an impermeable barrier to groundwater flow and influences hydrogeologic connectivity and storage. The Arctic is warming at twice the global average rate, leading to rapid permafrost thaw with unclear consequences for groundwater systems. In this study, we develop a numerical groundwater model of the Granger Basin, Yukon, to further our understanding of the influence of permafrost and thaw on groundwater flow in basins impacted by climate change.</p><p>Granger Basin is a 7.6 km<sup>2</sup>  headwater catchment located within the Wolf Creek Research Basin, Yukon, Canada. It is representative of a subarctic-continental mountain environment with already observable climate change impacts. To date, there has been limited hydrogeology monitoring or numerical modeling at this site. To investigate cryohydrogeologic processes within the basin, we integrate existing field data, including 30 years of hydrometeorological records and geophysical data into a three-dimensional numerical model with saturated-unsaturated groundwater flow. We use the SUTRA-ice numerical model that couples groundwater flow and energy transport with dynamic freeze-thaw processes. The model incorporates both time-dependent thermal and hydrological surface boundary conditions and is used parametrically to understand the generation of groundwater baseflow in this setting. We will present initial results that will evaluate the impact of different hydrogeologic properties on the generation of groundwater streamflow in Wolf Creek, how permafrost in transition affects the groundwater system, and provide the framework for future research directions.</p>


2021 ◽  
Vol 14 (15) ◽  
Author(s):  
Amuthini Sambhavi ArunaJadesan ◽  
Nagamani Kattukota ◽  
Senthilkumar Mohanavelu ◽  
Gowtham Balu ◽  
Venkatesan Selvaraj ◽  
...  

2018 ◽  
Vol 10 (2) ◽  
pp. 276-284 ◽  
Author(s):  
Gang Chen ◽  
Shiguang Xu ◽  
Chunxue Liu ◽  
Lei Lu ◽  
Liang Guo

Abstract Mine water inrush is one of the important factors threatening safe production in mines. The accurate understanding of the mine groundwater flow field can effectively reduce the hazards of mine water inrush. Numerical simulation is an important method to study the groundwater flow field. This paper numerically simulates the groundwater seepage field in the GaoSong ore field. In order to ensure the accuracy of the numerical model, the research team completed 3,724 field fissure measurements in the study area. The fracture measurement results were analyzed using the GEOFRAC method and the whole-area fracture network data were generated. On this basis, the rock mass permeability coefficient tensor of the aquifer in the study area was calculated. The tensor calculation results are used in the numerical model of groundwater flow. After calculation, the obtained numerical model can better represent the groundwater seepage field in the study area. In addition, we designed three different numerical models for calculation, mainly to explore the influence of the tensor assignment of permeability coefficient on the calculation results of water yield of the mine. The results showed that irrational fathom tensor assignment would cause a significant deviation in calculation results.


Author(s):  
Yasuo NIIDA ◽  
Norikazu NAKASHIKI ◽  
Takaki TSUBONO ◽  
Shin’ichi SAKAI ◽  
Teruhisa OKADA

1998 ◽  
Vol 26 ◽  
pp. 174-178 ◽  
Author(s):  
Peter Gauer

A physically based numerical model of drifting and blowing snow in three-dimensional terrain is developed. The model includes snow transport by saltation and suspension. As an example, a numerical simulation for an Alpine ridge is presented and compared with field measurements.


Sign in / Sign up

Export Citation Format

Share Document