scholarly journals Leachate Characterization and Assessment of Surface Water Quality near Karadiyana Solid Waste Dump Site

Author(s):  
L.L.U. Mandakini ◽  
N. Mannapperuma ◽  
Bandara N.J.G.J. ◽  
Silva K.D.C.C.J. ◽  
Perera M.T.C.
2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Besufekad Mekonnen ◽  
Alemayehu Haddis ◽  
Wuhib Zeine

An increase in urban population and the rising demand for food and other essentials perpetuate a rise in the amount of waste being generated daily by each household. In Ethiopia, this waste is eventually thrown into open dump sites. It can cause severe impact on soil and surface water quality. As a result, it becomes the probable source of human health risk through food chain. Therefore, this study was aimed at assessing the effect of a solid waste dump site on surrounding soil and river water quality in Tepi town, Southwest Ethiopia. Three surface water, one leachate, and four soil samples were collected and analyzed. Six heavy metals for surface water and leachate samples and four heavy metals for soil samples were measured by flame atomic absorption spectroscopy. In addition, physiochemical parameters were analyzed using standard methods. The data were analyzed statistically using Origin pro version 8.0 computer software packages. The pH of soil was slightly basic ranging from 8 ± 0.1 to 8.7 ± 0.21. Electrical conductivity was lower at 60 meters (1800 ± 0.5 μs/cm) and higher in the other sample sites (3490 ± 0.66–4920 ± 1.04 μs/cm). The concentration of heavy metals in soil samples revealed cadmium (0.53 ± 0.01–2.26 ± 0.02 mg/kg), zinc (623.93 ± 0.29–859.41 ± 0.02 mg/kg), lead (3.26 ± 0.25–57.560.26 mg/kg), and copper (204.06 ± 0.06–337.11 ± 0.01 mg/kg). Lead, cadmium, manganese, nickel, copper, and zinc were found in the leachate water; nickel and manganese were found in the nearby river water; BOD5 and COD for both leachate and stream water samples were found to be higher than standard guideline values. The finding suggested that solid waste open dump site adversely affects soil and water quality in the study area and becomes a probable source of risk for human health via the food chain.


Author(s):  
S. A. Nta ◽  
M. J. Ayotamuno ◽  
A. H. Igoni ◽  
R. N. Okparanma

The present investigation discusses the characteristic of leachate generated from municipal solid waste landfill and it adverse impacts on downstream water quality. Landfill leachate was collected from a hole dug 10 m away from the waste dump site and the appearance of the leachate sample looks black. Three downstream water samples were collected at 10 meters intervals each from each other and less than 100 meters from the boundary of the dumpsite. All the samples were examined for temperature, pH, TDS, TSS, BOD, COD, nitrate, ammonia, Cu, Ni, Pb, Cd, Cl, total phosphate, sulfate, EC, DO and turbidity. The aim was to compare physicochemical and heavy metal properties of leachate and downstream water quality with internationally accepted protocols. The Laboratory analysis exhibited prevalence of high value of pH (8.5130.09), temperature(29.00.0), turbidity (14.00.41NTU), DO (0.1670.05 mg/l), COD (68.00.33 mg/l), BOD5 (324.03.00 mg/l), EC (446315.53s/cm), Total phosphate (62.3580.01 mg/l), Pb (0.310.00 mg/l), Cd (0.060.00 mg/l), Ni (0.3550.01 mg/l), and Cu (8.670.04 mg/l) in the leachate sample, which have exceeded their permissible limits. For downstream water samples, pH (7.760.07 to 7.5070.09), temperature (29.00.00) for the three sampling points, DO (3.6670.15 to 3.2330.12 mg/l), total phosphate (8.2250.00 to 7.9350.02 mg/l), Pb (0.4650.01 to 0.0910.00 mg/l), Cd (0.040.00 to 0.0230.00 mg/l), Ni and Cu (0.0430.06 mg/l) and (1.0620.00 mg/l) respectively, also exceeded their respective permissible limit recommended by Nigerian Standard for Drinking Water Quality, World Health Organization in drinking water quality. From this study, there is evidence that there is an increase in risk to surface water that is reported near Uyo village road municipal solid waste dumping site. Therefore, the concerned authority should take appropriate intervention measures to protect surface water. Also, knowledge of leachate quality will be useful in planning and providing remedial measures to protect downstream water quality in the area.


2021 ◽  
Vol 1 (1) ◽  
pp. 21-24
Author(s):  
Afshan Urooj ◽  
Rida Ilyas ◽  
Nimrud Humayun Humayun

Water pollution has been a hot debate for government and scientists. in addition, protecting river water quality is exceedingly immediate because of serious water pollution and global scarcity of water reservoir. This study was conducted to assess the effect of solid waste dumping on surface water quality. In return to achieve this, water samples were obtained in different months from site. Below site was selected due to the dumps on surface water. Water parameters pH, turbidity conductivity and temperature were determined using pH/conductivity meter, Most the values are within the permissible limits, but all the samples do not fulfill WHO requirements, site may have effects on human health due to waterborne diseases and on soil fertility.


2019 ◽  
Author(s):  
Besufekad Asres Mekonnen ◽  
Alemayehu Haddis ◽  
Wuhib Zeine

Abstract Background An increase in the urban population and the rising demand for food and other essentials perpetuate a rise in the amount of waste being generated daily by each household. In low-income countries, this waste is eventually thrown into open dump sites. It can cause severe impacts on human health and the surrounding environment. This study was aimed at assessing the effect of a solid waste dump site of Teppi town on surrounding soil and river water quality. Methods A total of three surface water, one leachate water samples, and four soil samples were collected and were analyzed. Six heavy metals for surface water and leachate samples and four heavy metals for soil samples were measured by flame atomic absorption spectroscopy. Additionally, physical and chemical parameters were analyzed using standard methods. The soil and water data were analyzed statistically using Origin pro version 8.0 computer software packages. Analysis of variance (ANOVA) was used to assess whether the mean values of heavy metals and physicochemical parameters in soil and water samples varied significantly between distances and location from the dump site, possibilities less than 0.05 (p< 0.05) was considered statistically significant. Results pH of soil was slightly basic (pH 8±0.1 up to 8.7±0.21. Similarly, EC was lower in 60 meters (1800±0.5μs/cm) and higher in the other sample sites (3490±0.66-4920±1.04μs/cm). The concentration of heavy metals such as cadmium (0.53±0.01-2.26±0.02 mg/kg), zinc (623.93±0.29-859.41±0.02mg/kg), lead (3.26±0.25-57.560.26mg/kg), and copper (204.06±0.06 337.11±0.01mg/kg) in the sample soils has been found to be higher than Ethiopian EPA and USEPA guideline values. Lead, cadmium, manganese, nickel, copper, and zinc in the leachate water and nickel and manganese in nearby river water, total dissolved solid, BOD5, chemical oxygen demand, and turbidity for both leachate and stream water samples were found to be higher than the Ethiopian EPA and WHO standard guideline values. Conclusions The finding suggested that solid waste open dump site adversely affects soil and water quality in the study area and probable source of human health risks via the food chain. The soil in the area requires Phytoremediation technologies. In addition, sanitary landfill is recommended.


2021 ◽  
Vol 9 (2) ◽  
pp. 103-110
Author(s):  
Nguyen Thanh Giao

Surface water sources play an important role in human and biological activities and the socio-economic development of the region. Therefore, the assessment of water quality and determination of the causes of water pollution in Sao river is essential for good management of the surface water environment. The study was conducted from July to December 2020. Water samples were collected at the time of low tide to evaluate the water quality indicators of temperature, pH, conductivity (EC), dissolved oxygen (DO), biological oxygen demand (BOD), total suspended solids (TSS), ammonium (N-NH4+), orthophosphate (P-PO43-) and coliform. The source of pollution was determined by direct interviews with households living near Sao river. The results showed that surface water quality in Sao river had signs of organic pollution and microbiological pollution due to BOD, TSS, N-NH4+, P-PO43-, coliform exceeded the allowable limits of National Technical regulation on surface water quality (QCVN 08-MT:2015/BTNMT, column A1). The results of the interview revealed that 70% of respondents said that water was seriously polluted and the main sources of pollution were domestic solid waste and domestic wastewater. Therefore, to improve surface water quality in Sao river, solid waste and wastewater management is urgently required. It is necessary to promote the monitoring and management of water quality with the participation of local authorities and communities.


Sign in / Sign up

Export Citation Format

Share Document