scholarly journals Assessment of the effect of solid waste dump site on surrounding soil and river water quality in Teppi town, Southwest Ethiopia

2019 ◽  
Author(s):  
Besufekad Asres Mekonnen ◽  
Alemayehu Haddis ◽  
Wuhib Zeine

Abstract Background An increase in the urban population and the rising demand for food and other essentials perpetuate a rise in the amount of waste being generated daily by each household. In low-income countries, this waste is eventually thrown into open dump sites. It can cause severe impacts on human health and the surrounding environment. This study was aimed at assessing the effect of a solid waste dump site of Teppi town on surrounding soil and river water quality. Methods A total of three surface water, one leachate water samples, and four soil samples were collected and were analyzed. Six heavy metals for surface water and leachate samples and four heavy metals for soil samples were measured by flame atomic absorption spectroscopy. Additionally, physical and chemical parameters were analyzed using standard methods. The soil and water data were analyzed statistically using Origin pro version 8.0 computer software packages. Analysis of variance (ANOVA) was used to assess whether the mean values of heavy metals and physicochemical parameters in soil and water samples varied significantly between distances and location from the dump site, possibilities less than 0.05 (p< 0.05) was considered statistically significant. Results pH of soil was slightly basic (pH 8±0.1 up to 8.7±0.21. Similarly, EC was lower in 60 meters (1800±0.5μs/cm) and higher in the other sample sites (3490±0.66-4920±1.04μs/cm). The concentration of heavy metals such as cadmium (0.53±0.01-2.26±0.02 mg/kg), zinc (623.93±0.29-859.41±0.02mg/kg), lead (3.26±0.25-57.560.26mg/kg), and copper (204.06±0.06 337.11±0.01mg/kg) in the sample soils has been found to be higher than Ethiopian EPA and USEPA guideline values. Lead, cadmium, manganese, nickel, copper, and zinc in the leachate water and nickel and manganese in nearby river water, total dissolved solid, BOD5, chemical oxygen demand, and turbidity for both leachate and stream water samples were found to be higher than the Ethiopian EPA and WHO standard guideline values. Conclusions The finding suggested that solid waste open dump site adversely affects soil and water quality in the study area and probable source of human health risks via the food chain. The soil in the area requires Phytoremediation technologies. In addition, sanitary landfill is recommended.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Besufekad Mekonnen ◽  
Alemayehu Haddis ◽  
Wuhib Zeine

An increase in urban population and the rising demand for food and other essentials perpetuate a rise in the amount of waste being generated daily by each household. In Ethiopia, this waste is eventually thrown into open dump sites. It can cause severe impact on soil and surface water quality. As a result, it becomes the probable source of human health risk through food chain. Therefore, this study was aimed at assessing the effect of a solid waste dump site on surrounding soil and river water quality in Tepi town, Southwest Ethiopia. Three surface water, one leachate, and four soil samples were collected and analyzed. Six heavy metals for surface water and leachate samples and four heavy metals for soil samples were measured by flame atomic absorption spectroscopy. In addition, physiochemical parameters were analyzed using standard methods. The data were analyzed statistically using Origin pro version 8.0 computer software packages. The pH of soil was slightly basic ranging from 8 ± 0.1 to 8.7 ± 0.21. Electrical conductivity was lower at 60 meters (1800 ± 0.5 μs/cm) and higher in the other sample sites (3490 ± 0.66–4920 ± 1.04 μs/cm). The concentration of heavy metals in soil samples revealed cadmium (0.53 ± 0.01–2.26 ± 0.02 mg/kg), zinc (623.93 ± 0.29–859.41 ± 0.02 mg/kg), lead (3.26 ± 0.25–57.560.26 mg/kg), and copper (204.06 ± 0.06–337.11 ± 0.01 mg/kg). Lead, cadmium, manganese, nickel, copper, and zinc were found in the leachate water; nickel and manganese were found in the nearby river water; BOD5 and COD for both leachate and stream water samples were found to be higher than standard guideline values. The finding suggested that solid waste open dump site adversely affects soil and water quality in the study area and becomes a probable source of risk for human health via the food chain.


Author(s):  
S. A. Nta ◽  
M. J. Ayotamuno ◽  
A. H. Igoni ◽  
R. N. Okparanma

The present investigation discusses the characteristic of leachate generated from municipal solid waste landfill and it adverse impacts on downstream water quality. Landfill leachate was collected from a hole dug 10 m away from the waste dump site and the appearance of the leachate sample looks black. Three downstream water samples were collected at 10 meters intervals each from each other and less than 100 meters from the boundary of the dumpsite. All the samples were examined for temperature, pH, TDS, TSS, BOD, COD, nitrate, ammonia, Cu, Ni, Pb, Cd, Cl, total phosphate, sulfate, EC, DO and turbidity. The aim was to compare physicochemical and heavy metal properties of leachate and downstream water quality with internationally accepted protocols. The Laboratory analysis exhibited prevalence of high value of pH (8.5130.09), temperature(29.00.0), turbidity (14.00.41NTU), DO (0.1670.05 mg/l), COD (68.00.33 mg/l), BOD5 (324.03.00 mg/l), EC (446315.53s/cm), Total phosphate (62.3580.01 mg/l), Pb (0.310.00 mg/l), Cd (0.060.00 mg/l), Ni (0.3550.01 mg/l), and Cu (8.670.04 mg/l) in the leachate sample, which have exceeded their permissible limits. For downstream water samples, pH (7.760.07 to 7.5070.09), temperature (29.00.00) for the three sampling points, DO (3.6670.15 to 3.2330.12 mg/l), total phosphate (8.2250.00 to 7.9350.02 mg/l), Pb (0.4650.01 to 0.0910.00 mg/l), Cd (0.040.00 to 0.0230.00 mg/l), Ni and Cu (0.0430.06 mg/l) and (1.0620.00 mg/l) respectively, also exceeded their respective permissible limit recommended by Nigerian Standard for Drinking Water Quality, World Health Organization in drinking water quality. From this study, there is evidence that there is an increase in risk to surface water that is reported near Uyo village road municipal solid waste dumping site. Therefore, the concerned authority should take appropriate intervention measures to protect surface water. Also, knowledge of leachate quality will be useful in planning and providing remedial measures to protect downstream water quality in the area.


2017 ◽  
Vol 9 (2) ◽  
pp. 97-104
Author(s):  
MMM Hoque ◽  
PP Deb

This study was conducted to know the status of physicochemical water quality parameter and heavy metal concentration in the water of Buriganga river, adjoining to Dhaka city. Water samples were collected from five different points of Buriganga river and were analyzed to determine pH, electrical conductivity (EC), total dissolved solids (TDS), dissolved oxygen (DO), biological oxygen demand (BOD), chromium (Cr), lead (Pb), cadmium (Cd), copper (Cu) and manganese (Mn) content. Most of the measured water quality parameters and concentration of heavy metals were exceeded the standard level set by ECR and ADB. Among heavy metals concentration, level of chromium and cadmium were 4-5 times higher than the standard drinking level, these results indicate that surrounding industrial wastewater discharging from textile and tannery industries, which pollute the Buriganga river water. During the observation, at Hazaribagh station BOD level was found 32 times higher than drinking water standard level and 6 times higher than standard irrigation level, indicating Buriganga river water is extremely polluted by microorganism and is not suitable for household and irrigational use. Similarly, DO level at Buriganga river water was 5 times lower than the standard level, which indicates that Buriganga river water is extremely polluted and is unsuitable for aquatic life which are dependent on DO for their sustain. In the present study, the measured level of EC, chromium, cadmium and copper were found higher level as compare to the previous studies.J. Environ. Sci. & Natural Resources, 9(2): 97-104 2016


Author(s):  
A. K. M. Al-Amin ◽  
Md. Shahriar Azam ◽  
Md. Shazzadur Rahman ◽  
Afifa Tajremin ◽  
M. K. Haque ◽  
...  

In this study, the soil and water samples were analyzed to evaluate the effects of coal stockpile on soil and water quality at Haluaghat Upazilla, Mymensingh, Bangladesh. As a natural resource, coal has potential contributions to the development of economics of a country but coal storage deteriorates surrounding surface and ground water and soil quality in different ways. Besides, it has significant impacts on the arable lands and water catchments. The analyses of 10 soil and 10 water samples (5 samples from ground water and 5 samples from surface water) were collected at 0 m, 200 m, 500 m and 700 m distance from the coal storage area were carried out using standard methods. The pH, electrical conductivity (EC), organic matter (OM), macronutrients (N, P and K) and heavy metals (Lead and Cadmium) were analysed for soil samples and for water samples pH, EC, macronutrients (P and K), heavy metals (Pb and Cd) were analysed. From the results, it was observed that most of the value of soil and water quality components were higher at close to the coal stockpile area and gradually decreased with distance. Soil pH value showed a decreasing trend (5.2 to 3.2) with increasing distances from the coal storage area; whereas water pH increased gradually with increasing distances from the coal storage area. Soil OM content was found highest at the coal storage area, which decreased gradually with increasing distance. The content of soil N, P, K was also recorded highest at the coal storage area which followed decreasing trend with increasing distance. The content of Pb and Cd in soil adjacent to coal storage area was higher compared to distant areas (500-700 m) in paddy field. The soil quality might be deteriorated due to coal stockpile effluents. The effluents from the coal stockpile should be treated before it is discharged to soil or water.


2020 ◽  
Author(s):  
S. A. Nihalani ◽  
S. N. Behede ◽  
A. R. Meeruty

Abstract Over exploitation and pollution of groundwater resources is considered to one of the major pollution problems these days. Even pollution of air, surface water or land may have a significant effect on pollution and contamination of ground water. Industries, human activities, agriculture, etc generate waste in various forms like solid, liquid and gas. If all this waste is not treated properly, it shall result polluting the environment and further affecting the quality of ground water due to its hydraulic connectivity with the hydrological cycle. In addition, leachate resulting from municipal or industrial solid waste dump site as well agricultural run-off also leads to ground water pollution. It has been estimated that around 45 million people globally are affected by water pollution resulting from excess iron, fluoride, arsenic, or sea water intrusion. The current study deals with physico-chemical analysis of ground water samples and suitability determination of water by using water quality index and Piper diagram for solid waste dump site near Pune. Water samples were collected from open wells as well as bore wells for pre-monsoon and post monsoon season and results were evaluated using residual sodium carbonate, sodium hazard, sodium adsorption ratio, and piper diagram. It can be inferred that, Ca-Cl type of water predominates the study area for both pre-monsoon as well as post-monsoon season.


2021 ◽  
Vol 11 (14) ◽  
pp. 6592
Author(s):  
Ana Moldovan ◽  
Maria-Alexandra Hoaghia ◽  
Anamaria Iulia Török ◽  
Marius Roman ◽  
Ionut Cornel Mirea ◽  
...  

This study aims to investigate the quality and vulnerability of surface water (Aries River catchment) in order to identify the impact of past mining activities. For this purpose, the pollution and water quality indices, Piper and Durov plots, as well vulnerability modeling maps were used. The obtained results indicate that the water samples were contaminated with As, Fe, Mn, Pb and have relatively high concentrations of SO42−, HCO3−, TDS, Ca, K, Mg and high values for the electrical conductivity. Possible sources of the high content of chemicals could be the natural processes or the inputs of the mine drainage. Generally, according to the pollution indices, which were correlated to high concentrations of heavy metals, especially with Pb, Fe and Mn, the water samples were characterized by heavy metals pollution. The water quality index classified the studied water samples into five different classes of quality, namely: unsuitable for drinking, poor, medium, good and excellent quality. Similarly, medium, high and very high vulnerability classes were observed. The Durov and Piper plots classified the waters into Mg-HCO3− and Ca-Cl− types. The past and present mining activities clearly change the water chemistry and alter the quality of the Aries River, with the water requiring specific treatments before use.


Author(s):  
I. Sh. Normatov ◽  
V.V. Goncharuk ◽  
N.A. Amirgaliev ◽  
A.S. Madibekov ◽  
A.I. Normatov

The water quality of the transboundary Pyanj River in the formation zone and along the riverbed before merging with another tributary of the transboundary Amu Darya River-the Vakhsh River was studied. The water quality on the upstream river corresponds to the very soft class (> 1.5 mmol/dm3) and in the middle and the downstream to the soft class (1.5-3.0 mmol/dm3). At the upper, middle and lower reaches of the Pyanj river the concentration of alkaline earth exceeds alkali metals (Ca2+ + Mg2+> Na+ + K+) at HCO3- > SO42- + Cl- and according to the Handa classification they are characterized by temporary rigidity. To assess the criterion of applicability of the Pyanj river water for irrigation the coefficient of sodium adsorption (SAC) was calculated for water samples from the upstream (Khorog), middle (Darvaz) and the downstream (Lower Pyanj) of the Pyanj river that were equal to 0.88; 1.07; 1.71, respectively. The SAC values for all water samples (from the upper, middle and lower reaches) of the Pyanj river indicate their good qualities for irrigation of agricultural land. The concentration of heavy metals in the Pyanj river is significantly lower than the maximum permissible concentration (MPC).


2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hawraz Sami Khalid ◽  
Hoshyar Saadi Ali ◽  
Dhary Almashhadany

The present study was conducted to evaluate the quality of drinking water in randomly selected schools in Erbil city, Kurdistan Region, Iraq. The water quality indices such as the Heavy metal Pollution Index (HPI) and Heavy metal Evaluation Index (HEI) were applied to characterize water quality. Eighteen schools were incorporated and sampled for their water storage tanks available to students. Water samples and sediment samples from tanks floor were analyzed by Inductively Coupled Plasma Optical Emission Spectrometer for the determination of twenty-two metal elements. In drinking water samples, all detected metals did not exceed the permissible limits of the World Health Organization. The results of this study showed that the average values of HPI and HEI for As, Cd, Cr, Cu, Fe, Pb, Mn, Ni, and Zn were 54.442 and 0.221, respectively. According to data of the water quality indices, the schools drinking water quality are good and suitable for drinking in terms of heavy metals. However, sediments samples contained high concentrations of all elements including the toxic heavy metals (As, Cd, Cr, and Pb). Re-suspension of sediments into water column after refilling storage tanks can pose a serious threat to students drinking water from such vessels. It is therefore recommended that proper storage tanks are provided to the schools accompanied by continuous sanitation and hygiene practice to mitigate the corrosion of tanks to avoid health risks of toxic metal


Sign in / Sign up

Export Citation Format

Share Document