scholarly journals Optimization of Headspace Solid-phase Microextraction for GC-MS Analysis of Volatile Compounds Produced by Biocontrol Strain Bacillus subtilis CF-3 Using Response Surface Methodology

2017 ◽  
Vol 23 (4) ◽  
pp. 583-593 ◽  
Author(s):  
Haiyan Gao ◽  
Xinxing Xu ◽  
Qing Zeng ◽  
Peizhong Li
Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3612
Author(s):  
Marinos Xagoraris ◽  
Alexandra Skouria ◽  
Panagiota-Kyriaki Revelou ◽  
Eleftherios Alissandrakis ◽  
Petros A. Tarantilis ◽  
...  

This study aimed at an experimental design of response surface methodology (RSM) in the optimization of the dominant volatile fraction of Greek thyme honey using solid-phase microextraction (SPME) and analyzed by gas chromatography-mass spectrometry (GC-MS). For this purpose, a multiple response optimization was employed using desirability functions, which demand a search for optimal conditions for a set of responses simultaneously. A test set of eighty thyme honey samples were analyzed under the optimum conditions for validation of the proposed model. The optimized combination of isolation conditions was the temperature (60 °C), equilibration time (15 min), extraction time (30 min), magnetic stirrer speed (700 rpm), sample volume (6 mL), water: honey ratio (1:3 v/w) with total desirability over 0.50. It was found that the magnetic stirrer speed, which has not been evaluated before, had a positive effect, especially in combination with other factors. The above-developed methodology proved to be effective in the optimization of isolation of specific volatile compounds from a difficult matrix, like honey. This study could be a good basis for the development of novel RSM for other monofloral honey samples.


2007 ◽  
Vol 79 (7) ◽  
pp. 2869-2876 ◽  
Author(s):  
Charlotte N. Legind ◽  
Ulrich Karlson ◽  
Joel G. Burken ◽  
Fredrik Reichenberg ◽  
Philipp Mayer

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Jingke Liu ◽  
Wei Zhao ◽  
Shaohui Li ◽  
Aixia Zhang ◽  
Yuzong Zhang ◽  
...  

The volatile compounds in foxtail millet sake were extracted by headspace solid-phase microextraction (HS-SPME) and analyzed using gas chromatography-mass spectroscopy (GC-MS). Different methods of sample preparation were used to optimize this method (SPME fiber types, sample amount, extraction time, extraction temperature, content of NaCl, and rotor speed). For final method of sample preparation, 8 mL of sake was placed in a 15 mL headspace vial with addition of 1.5 g of NaCl; a 50/30 μm DVB/CAR/PDMS SPME fiber was used for extraction at 50°C for 30 min with 10 rpm continuous stirring. A total of 41 volatile compounds were identified from the sake sample, including 9 esters, 6 alcohols, 4 acids, 4 aldehydes, 9 hydrocarbons, 7 benzene derivatives, and 2 others. The main volatile compounds were ethyl acetate, phenylethyl alcohol, butanedioic acid diethyl ester, and hexadecane. According to their odors active values (OAVs), 10 volatile compounds were established to be odor active compounds and to contribute to the typical foxtail millet sake aroma. Hexanoic acid ethyl ester was the most prominent odor active compound.


Sign in / Sign up

Export Citation Format

Share Document