METHOD OF IMPROVEMENT OF POST-REPAIR DURABILITY OF GEAR PUMPS

Author(s):  
В.В. Дідур ◽  
◽  
В.В. Паніна ◽  
О.В. В'юник ◽  
◽  
...  
Keyword(s):  
Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 251
Author(s):  
Piotr Osiński ◽  
Grzegorz Chruścielski ◽  
Leszek Korusiewicz

This article presents theoretical and experimental calculations of the minimum thickness of a compensation lip used in external gear pumps. Pumps of this type are innovative technical solutions in which circumferential backlash (clearance) compensation is used to improve their volumetric and overall efficiency. However, constructing a prototype of such a pump requires long-lasting research, and the compensation lip is its key object, due to the fact that it is an element influenced by a notch and that it operates in unfavorable conditions of strong fatigue stresses. The theoretical calculations presented in this article are based on identifying maximum stress values in a fatigue cycle and on implementing the stress failure condition and the conditions related to the required value of the fatigue safety factor. The experimental research focuses on static bending tests of the lips as well as on the fatigue loading of the lips in series of tests at increasing stress values until lip failure due to fatigue. The tests allowed the minimum lip thickness to be found for the assumed number of fatigue cycles, which is 2.5 times the number of cycles used in wear margin tests.


Author(s):  
Ahmed M. M. El-Bahloul ◽  
Yasser Z. R. Ali

The main objective of this paper is to study the effect of gear geometry on the discharge of gear pumps. We have used gears of circular-arc tooth profile as gear pumps and have compared between these types of gearing and spur, helical gear pumps according to discharge. The chosen module change from 2 to 16 mm, number of teeth change from 8 to 20 teeth, pressure angle change from 10 to 30 deg, face width change from 20 to 120 mm, correction factor change from −1 to 1, helix angle change from 5 to 30 deg, and radii of curvature equal 1.4, 1.5, 2, 2.5, 2.75, and 3m are considered. The authors deduced that the tooth rack profile with radius of curvature equal 2.5, 2.75, 3m for all addendum circular arc tooth and convex-concave tooth profile, and derived equations representing the tooth profile, and calculated the points of intersections between curves of tooth profile. We drive the formulas for the volume of oil between adjacent teeth. Computer program has been prepared to calculate the discharge from the derived formulae with all variables for different types of gear pumps. Curves showing the change of discharge with module, number of teeth, pressure angle, face width, correction factor, helix angle, and radius of curvature are presented. The results show that: 1) The discharge increases with increasing module, number of teeth, positive correction factor, face width and radius of curvature of the tooth. 2) The discharge increases with increasing pressure angle to a certain value and then decreases with increasing pressure angle. 3) The discharge decreases with increasing helix angle. 4) The convex-concave circular-arc gears gives discharge higher than that of alla ddendum circular arc, spur, and helical gear pumps respectively. 5) A curve fitting of the results are done and the following formulae derived for the discharge of involute and circular arc gear pumps respectively: Q=A1bm2z0.895e0.065xe0.0033αe−0.0079βQ=A2bm2z0.91ρ10.669e−0.0047β


2016 ◽  
Vol 18 (6) ◽  
pp. 4033-4041
Author(s):  
Xiaojun Zhou ◽  
Xiaoru Hao ◽  
Xiaoguang Liu ◽  
Xiaohu Sang

2021 ◽  
Vol 285 ◽  
pp. 07013
Author(s):  
M. N. Kostomakhin ◽  
I. M. Makarkin ◽  
N. A. Petrischev

In the article, the characteristics of the function of temperature difference of a working fluid at the inlet and outlet of gear pumps with different efficiency and at different pressures are theoretically and experimentally investigated. A method is proposed for determining the efficiency of pumps during its operation at variable pressure, based on the hypothesis that the performed useful work of the pump is characterized by the area under the pressure curve, and the lost energy is the area under the temperature difference curve.


Author(s):  
K Foster ◽  
R Taylor ◽  
I M Bidhendi

A description is given of a computer program for investigating the performance of the external gear pumps under varying conditions with the special emphasis on the examination of pressure distributions within the pump, i.e. excitation forces for the vibration of the pump case and the variation in flow generated by the pump. Measurements are presented for the variation with time of tooth space pressure and the results are compared with the theoretical predictions from the computer program.


Sign in / Sign up

Export Citation Format

Share Document