external gear pumps
Recently Published Documents


TOTAL DOCUMENTS

53
(FIVE YEARS 17)

H-INDEX

10
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Kaeul Lim ◽  
Federico Zappaterra ◽  
Swarnava Mukherjee ◽  
Andrea Vacca

Abstract The torque efficiency and flow efficiency of positive displacement machines for fluid power applications are determined by the behavior of their internal lubricating interfaces. This aspect has motivated the development of tribological simulation tools for the analysis of these interfaces. The level of details these tools can provide allows explaining some counterintuitive aspects that occur in these interfaces. This paper focuses on a significant example, which is the high asymmetric behavior of the lubricating films occurring in pressure compensated external gear pumps. These units are often designed with a symmetric axial balancing compensation system. Notwithstanding, there are differences between the lateral gaps that can be explained only considering the mutual effects of the pressure development in the film and the material deformation. To study this problem, this paper utilizes the tool Multics-HYGESim developed by the authors’ research team. Two analyses are performed: the first one imposing axial symmetry in the behavior of the gap, which is the common assumption discussed in literature; the second one (referred to as “full configuration”), which holds the asymmetric behavior of the gap. An experimental set-up is used to validate the modeling assumptions based on the measurements of the drain leakage and volumetric efficiency. The main paper findings are on the uneven distribution of these leakages, which indicates an asymmetric behavior of the gap films in the unit.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4468
Author(s):  
Paulina Szwemin ◽  
Wieslaw Fiebig

The design of gear pumps and motors is focused on more efficient units which are possible to achieve using advanced numerical simulation techniques. The flow that appears inside the gear pump is very complex, despite the simple design of the pump itself. The identification of fluid flow phenomena in areas inside the pump, considering the entire range of operating parameters, is a major challenge. This paper presents the results of simulation studies of leakages in axial and radial gaps in an external gear pump carried out for different gap shapes and sizes, as well as various operating parameters. To investigate the processes that affect pump efficiency and visualize the fluid flow phenomena during the pump’s operation, a CFD model was built. It allows for a detailed analysis of the impact of the gears’ eccentricity on leakages and pressure build-up on the circumference. Performed simulations made it possible to indicate the relationship between leakages resulting from the axial and radial gap, which has not been presented so far. To verify the CFD model, experimental investigations on the volumetric efficiency of the external gear pump were carried out. Good convergence of results was obtained; therefore, the presented CFD model is a universal tool in the study of flow inside external gear pumps.


2021 ◽  
Vol 14 (1) ◽  
pp. 25-33
Author(s):  
Ahmed Mustaffa Saleem ◽  
Bahjat Hassan Alyas ◽  
Zaid Ali Shaalan

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Davide Guerra ◽  
Marco Polastri ◽  
Mattia Battarra ◽  
Alessio Suman ◽  
Emiliano Mucchi ◽  
...  

Thanks to their manufacturing simplicity, robustness, and consolidated design knowledge, external gear pumps are widely adopted in the automotive fields. With the purpose of leading the design procedure of these positive displacement machines, within this work, the authors integrate in a comprehensive tool the salient equations adopted for the design of the major gear pump features. The presented procedure is devoted to the design of multistage external gear pumps characterized by a singular floating driving shaft supported by fluid-dynamic journal bearings. Focusing the attention on the procedure flexibility, it has been structured in three iterative calculation phases. The core section of the methodology concerns the geometrical design of the involute gear tooth profile. It is oriented to ensure a proper volumetric displacement while complying with the space requirement and the tooth manufacturing limitations. Thus, through the analytical pressure loads estimation combined with the operational parameters, the second calculation step provides the design of the driving shaft and the relevant dimensions of the journal bearings. Finally, by means of a power loss approach, the third macrosection of the procedure leads to estimating the clearances between gear tip and housing. The potentials of the methodology are exposed by describing its applications to a case study of multistage gear pump employed in the dry sump lubrication system of an automotive heavy-duty engine. Each calculation step application is outlined with reference to the proposed analytical formulation and the results of the parameters calibration are presented. Within this context, the procedure is assessed by means of a CFD analysis. The results highlight the accuracy of the methodology on the estimation of the required delivery flow rate. Aside from being accurate, flexible, and reliable, the procedure stands out for being an innovative tool within the multistage gear pump framework.


Author(s):  
N.L. Velikanov ◽  
V.A. Naumov

The purpose of the research was to analyze the load characteristics of external gear pumps. As the initial data, the results of factory tests of the NMSH and SH pumps, provided by HMS Livgidromash JSC, were used. The load characteristics of the gear pump NMSH32-10 were constructed, and the dependence of this pump efficiency on the dimensionless pressure and Hersey number was given. The efficiency of the SH 40-4 pump was recalculated according to the test data. Findings of research show that for diesel fuel and oil, the calculated efficiency differs from the values indicated in the technical data sheet by more than 25%, while for fuel oil they differ slightly. This testifies to the non-monotonic dependence between the SH 40-4 pump efficiency and the viscosity. In the entire investigated range of pressures, with an increase in the viscosity of the pumped liquid, the efficiency first increases and then noticeably decreases. The paper presents the dependence of the volumetric and mechanical efficiency of the SH 40-4 pump on the Hersey number at three values of the viscosity of the pumped liquid.


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 342
Author(s):  
Alessandro Corvaglia ◽  
Massimo Rundo ◽  
Paolo Casoli ◽  
Antonio Lettini

The paper presents the computational fluid dynamics simulation of an external gear pump for fluid power applications. The aim of the study is to test the capability of the model to evaluate the pressure in a tooth space for the entire shaft revolution and the minimum inlet pressure for the complete filling. The model takes into account the internal fluid leakages and two different configurations of the thrust plates have been considered. The simulations in different operating conditions have been validated with proper high dynamics transducers measuring the internal pressure in a tooth space for the entire shaft revolution. Steady-state simulations have been also performed in order to detect the fall of the flow rate due to the incomplete filling of the tooth spaces when the inlet pressure is reduced. It has been demonstrated that, despite the need of a compromise for overcoming the limitation of considering fixed positions of the gears’ axes and of the thrust plates, significant results can be obtained, making the CFD approach very suitable for such analyses.


Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 251
Author(s):  
Piotr Osiński ◽  
Grzegorz Chruścielski ◽  
Leszek Korusiewicz

This article presents theoretical and experimental calculations of the minimum thickness of a compensation lip used in external gear pumps. Pumps of this type are innovative technical solutions in which circumferential backlash (clearance) compensation is used to improve their volumetric and overall efficiency. However, constructing a prototype of such a pump requires long-lasting research, and the compensation lip is its key object, due to the fact that it is an element influenced by a notch and that it operates in unfavorable conditions of strong fatigue stresses. The theoretical calculations presented in this article are based on identifying maximum stress values in a fatigue cycle and on implementing the stress failure condition and the conditions related to the required value of the fatigue safety factor. The experimental research focuses on static bending tests of the lips as well as on the fatigue loading of the lips in series of tests at increasing stress values until lip failure due to fatigue. The tests allowed the minimum lip thickness to be found for the assumed number of fatigue cycles, which is 2.5 times the number of cycles used in wear margin tests.


Author(s):  
Davide Guerra ◽  
Marco Polastri ◽  
Mattia Battarra ◽  
Alessio Suman ◽  
Emiliano Mucchi ◽  
...  

Abstract In this work, the authors present a robust and integrated procedure for the design of multi-stage gear pumps to be used in dry sump system applications. Based on the target delivery flow rate, rotational speed and fluid properties, the developed iterative method enables to directly obtain the geometrical features and the working parameters of the pump components, such as gearpair specifics, shaft and journal bearing dimensions, clearance values. The methodology is then applied to a case study in order to highlight its features and detail the achievable outcomes. Quality of the results is assessed by means of a CFD analysis, demonstrating the capability to obtain the expected volumetric efficiency.


Author(s):  
Logan T. Williams

Abstract Research into hydraulic quadrupeds at the US Naval Research Laboratory (NRL) has created the demand for in-house development of miniaturized hydraulic components, including pumps. As part of this effort to develop a miniaturized hydraulic powertrain, external gear pumps were examined, designed, and iterated upon to create an efficient pump package with a small form factor (1.5 × 1.6 × 1.8 inches). The evolution of the pump design has touched every component of the pump and has resulted in many practical design guidelines, novel pump components, and improved pump analysis tools. The original goal of developing the capability for integrated hydraulic powertrain components, such as embedding the pump into the quadruped’s hydraulic manifold, was to enable further compaction and streamlined system development. An additional result of the project was the accumulation of gear pump design fundamentals and lessons learned that can benefit any pump designer.


Author(s):  
Logan T. Williams

Abstract The most common gear architecture used in external gear pumps is the spur gear with an involute tooth profile. The involute spur gear has many benefits, such as a constant line of action, tolerance to parallel misalignment, and ease of fabrication. However, the involute spur gear has two major drawbacks in pump applications: the tooth profile results in trapped pockets of fluid that contribute to pressure spikes and noise generation, and the straight axial profile further increases noise due to intermittent tooth shock during meshing. Current state-of-the-art pumps utilize helical gears to enable a gradual mesh to reduce noise and pressure pulsation, which results in an axial load induced on the gears during meshing. A novel gear design has been developed that eliminates axial gear loading while preserving a gradual mesh. A hybrid tooth profile eliminates the trapped fluid pocket while maintaining the benefits of an involute profile. Initial testing demonstrates an increase in volumetric efficiency by 10% and a reduction of sound level by 7 dB compared to a spur gear of the same size.


Sign in / Sign up

Export Citation Format

Share Document