scholarly journals Theoretical and Experimental Fatigue Strength Calculations of Lips Compensating Circumferential Backlash in Gear Pumps

Energies ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 251
Author(s):  
Piotr Osiński ◽  
Grzegorz Chruścielski ◽  
Leszek Korusiewicz

This article presents theoretical and experimental calculations of the minimum thickness of a compensation lip used in external gear pumps. Pumps of this type are innovative technical solutions in which circumferential backlash (clearance) compensation is used to improve their volumetric and overall efficiency. However, constructing a prototype of such a pump requires long-lasting research, and the compensation lip is its key object, due to the fact that it is an element influenced by a notch and that it operates in unfavorable conditions of strong fatigue stresses. The theoretical calculations presented in this article are based on identifying maximum stress values in a fatigue cycle and on implementing the stress failure condition and the conditions related to the required value of the fatigue safety factor. The experimental research focuses on static bending tests of the lips as well as on the fatigue loading of the lips in series of tests at increasing stress values until lip failure due to fatigue. The tests allowed the minimum lip thickness to be found for the assumed number of fatigue cycles, which is 2.5 times the number of cycles used in wear margin tests.

2012 ◽  
Vol 430-432 ◽  
pp. 1843-1846
Author(s):  
Xian Hong Meng ◽  
Yu Xian Zhang ◽  
Jing Hai Zhou

A model of attenuation of residual strength with number of cycles has been founded .In this model the constant confined stress and maximum stress of fatigue loading are both considered. Based on the data of experiment, the coefficients of the model are determined. The model can be used to predict the residual life of specimen under biaxial compressive loading with constant confined stress.


2011 ◽  
Vol 261-263 ◽  
pp. 581-585
Author(s):  
X.H. Meng ◽  
W.W. Wang ◽  
J.H. Zhou ◽  
Yu Pu Song

A model of attenuation of residual strength with number of cycles has been founded .In this model the constant confined stress and maximum stress of fatigue loading are both considered. 55 specimens of plain concrete are tested under biaxial compressive fatigue loading with constant confined stress. Based on the data of experiment, the coefficients of the model are determined. The residual strength attenuating curves are shown in the paper. The model can be used to predict the residual life of specimen under biaxial compressive loading with constant confined stress. The results of prediction show that the suggested method is better than the Miner rule.


2020 ◽  
Vol 67 (1) ◽  
pp. 28-34
Author(s):  
Aleksandr V. Vinogradov ◽  
Aleksey V. Bukreev

When repairing and replacing electrical wiring in enterprises, the main difficulty is the lack or poor quality of documentation, plans for conductors laying. Distinguishing wires (cables) and their cores by the color of the shells or using tags attached to the ends is difficult if the shells have the same color and there are no tags. Devices and technical solutions used to identify wires and cables do not allow recognizing conductors without breaking the electrical circuit, removing insulation, and de-energizing the network. Searching for the right conductor is a time-consuming operation. (Research purpose) The research purpose is developing a new microcontroller device for identifying wires using an acoustic signal. (Materials and methods) Literature sources has been searched for devices for conductors identifying. (Results and discussion) The article proposes a method that involves feeding an acoustic signal to a wire at one point and capturing it at another, in order to recognize the desired wire. The article presents results of comparison of the developed microcontroller device for identifying conductors using an acoustic signal with known devices and methods for conductors recognizing. (Conclusions) The article reveals the shortcomings of existing methods and means of identifying wires and cables. Authors performed a theoretical calculation of the sound pressure in the conductor at a given distance. The article presents the calculation of speed of acoustic waves in conductors with different types of insulation. Authors designed a microcontroller device for identifying conductors using an acoustic signal and tested it. It was determined that the device increases the safety of work, reduces the cost of operating internal wiring and identification time; eliminates the violation of wire insulation, the need to disable electrical receivers. The convergence of theoretical calculations and experimental data was shown.


1967 ◽  
Vol 182 (1) ◽  
pp. 657-684 ◽  
Author(s):  
J. Spence ◽  
W. B. Carlson

Nozzles in cylindrical vessels have been of special interest to designers for some time and have offered a field of activity for many research workers. This paper presents some static and fatigue tests on five designs of full size pressure vessel nozzles manufactured in two materials. Supporting and other published work is reviewed showing that on the basis of the same maximum stress mild steel vessels give the same fatigue life as low alloy vessels. When compared on the basis of current codes it is shown that mild steel vessels may have five to ten times the fatigue life of low alloy vessels unless special precautions are taken.


2021 ◽  
Vol 87 (9) ◽  
pp. 59-67
Author(s):  
A. A. Khlybov ◽  
Yu. G. Kabaldin ◽  
M. S. Anosov ◽  
D. A. Ryabov ◽  
D. A. Shatagin

The evolution of the structure and assessment of the age limit of steel 12Cr18Ni10Ti upon fatigue loading is considered using neural network modeling and approaches of fractal analysis of the microstructure. An algorithm for processing images of the microstructures has been developed to improve their quality. An indicator of the fractal dimension of the image is used as a quantitative indicator for assessing the evolution of the microstructure of the surface metal layer. A quantitative assessment of the structures at different stress amplitudes is carried out in a wide range of low temperatures using the fractal dimension index. Correlation of the fractal dimension index with the run of the sample material is shown. The appearance of the main crack was observed in the range of 0.7 - 0.8 from the number of cycles to failure, after which the crack growth rate increased. At a lower temperature, the main crack is formed later, but further loading results in a higher crack growth rate. Formation of the secondary phases in austenitic steel at a lower temperature occurred at earlier stages than that at a temperature of t = +20°C, which led to hardening of the material. An artificial neural network (ANN) has been developed and trained for assessing structural changes in metal proceeding from the fractal dimensionality of the microstructure images at different stages of fatigue loading. The developed neural network made it possible to estimate with a sufficiently high accuracy the number of cycles before damage of the sample and the residual life of the material. Thus, the developed ANN can be used to assess the current state of the material in a wide range of low temperatures.


Author(s):  
K Foster ◽  
R Taylor ◽  
I M Bidhendi

A description is given of a computer program for investigating the performance of the external gear pumps under varying conditions with the special emphasis on the examination of pressure distributions within the pump, i.e. excitation forces for the vibration of the pump case and the variation in flow generated by the pump. Measurements are presented for the variation with time of tooth space pressure and the results are compared with the theoretical predictions from the computer program.


2021 ◽  
Author(s):  
Kaeul Lim ◽  
Federico Zappaterra ◽  
Swarnava Mukherjee ◽  
Andrea Vacca

Abstract The torque efficiency and flow efficiency of positive displacement machines for fluid power applications are determined by the behavior of their internal lubricating interfaces. This aspect has motivated the development of tribological simulation tools for the analysis of these interfaces. The level of details these tools can provide allows explaining some counterintuitive aspects that occur in these interfaces. This paper focuses on a significant example, which is the high asymmetric behavior of the lubricating films occurring in pressure compensated external gear pumps. These units are often designed with a symmetric axial balancing compensation system. Notwithstanding, there are differences between the lateral gaps that can be explained only considering the mutual effects of the pressure development in the film and the material deformation. To study this problem, this paper utilizes the tool Multics-HYGESim developed by the authors’ research team. Two analyses are performed: the first one imposing axial symmetry in the behavior of the gap, which is the common assumption discussed in literature; the second one (referred to as “full configuration”), which holds the asymmetric behavior of the gap. An experimental set-up is used to validate the modeling assumptions based on the measurements of the drain leakage and volumetric efficiency. The main paper findings are on the uneven distribution of these leakages, which indicates an asymmetric behavior of the gap films in the unit.


1959 ◽  
Vol 81 (4) ◽  
pp. 301-305 ◽  
Author(s):  
W. N. Findley

The concept that alternating shear stress is the primary cause of fatigue with the normal stress on the critical shear plane as an influencing factor has been developed for the case of mean (or static) stresses superimposed on combinations of torsion and axial load or bending. The influence of the maximum stress of the cycle of stress on the allowable alternating stress for a given number of cycles and on the orientation of the critical shear plane is explored. The predictions of the theory are consistent with the known trends of fatigue data both for ductile metals and cast irons. The theory explains the fact that the influence of mean stress is weak for torsion and stronger for bending of ductile metals, but strong for both torsion and bending of cast irons. As far as is known this is the first rational theory for the influence of mean stress.


Sign in / Sign up

Export Citation Format

Share Document