Method for determining the strain rate sensitivity factor for the Johnson-Cook model in Charpy tests

2017 ◽  
Vol 59 (11-12) ◽  
pp. 965-973 ◽  
Author(s):  
Michał Stopel ◽  
Dariusz Skibicki ◽  
Wojciech Moćko
2013 ◽  
Vol 589-590 ◽  
pp. 45-51 ◽  
Author(s):  
Li Na Zhang ◽  
Peng Nan Li ◽  
Si Wen Tang ◽  
Wen Bo Tang ◽  
Shuai Zhang

The stress-strain curves, mechanical behaviors, and Johnson-Cook model of 4Cr13 stainless steel were investigated at both the strain rates from 0.001s-1 to 7000s-1 and the temperatures from 293K to 673K based on the electronic universal testing machine and the split Hopkinson bar. The results showed that 4Cr13 stainless steel was very sensitive to the temperature and the strain rate. The temperature sensitivity factor decreased with increasing the temperature, and the strain rate sensitivity factor increased with increasing the strain rate. Both the temperature sensitivity factor and strain rate sensitivity factor decreased with increasing strain. The flow stress increased with strain rate and strain, but decreased with temperature. The J-C model prediction had a good agreement with the experimental stress-strain in the wide range of temperatures and strain rates. The Johnson-Cook model gave the foundation for finite element analysis during the cutting process.


2021 ◽  
Author(s):  
Sagar Mahalingappa Baligidad ◽  
Chethan Kumar Gangadhara ◽  
Maharudresh Aralikatte Chandrashekhar

Abstract Nanofillers can be added to polymers to improve their mechanical behavior. However, the yield behaviour of most polymer composites is influenced by strain rate. The majority of the research focused on the behaviour of polymer composites at high strain rates. This work aims to investigate how hydroxyapatite (HAP) and reduced Graphene Oxide (rGO) nanofillers affect the mechanical properties of sulphonated polyetheretherketone (sPEEK) at low (tensile and compression behaviour) and high strain rates (compression behaviour). The thermal, mechanical, and energy absorption responses of sPEEK filled with HAP and varying mass fraction (Mf) of rGO (0.5%, 1%, and 1.5%) at different strain are studied in detail. The strong strain rate effect was seen in HAp and rGO loaded sPEEK composites. The strain rate sensitivity factor of sPEEK-HAP/rGO improved as the strain rate increased, but decreased when the Mf of rGO increased. Under low strain rate compression, HAp and rGO loaded sPEEK absorbed more energy at Mf about 4%. SEM micrography was used to study the microstructures of the fractured interfaces of the components, revealing that the HAp and sPEEK materials formed a good compatibility in presence of rGO.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 339
Author(s):  
Xiang Wang ◽  
Zhi Qiang Ren ◽  
Wei Xiong ◽  
Si Nan Liu ◽  
Ying Liu ◽  
...  

The negative strain rate sensitivity (SRS) of metallic glasses is frequently observed. However, the physical essence involved is still not well understood. In the present work, small-angle X-ray scattering (SAXS) and high-resolution transmission electron microscopy (HRTEM) reveal the strong structure heterogeneity at nanometer and tens of nanometer scales, respectively, in bulk metallic glass (BMG) Zr64.13Cu15.75Ni10.12Al10 subjected to fully confined compression processing. A transition of SRS of stress, from 0.012 in the as-cast specimen to −0.005 in compression processed specimen, was observed through nanoindentation. A qualitative formulation clarifies the critical role of internal stress induced by structural heterogeneity in this transition. It reveals the physical origin of this negative SRS frequently reported in structurally heterogeneous BMG alloys and its composites.


Author(s):  
R.D. Liu ◽  
Y.Z. Li ◽  
L. Lin ◽  
C.P. Huang ◽  
Z.H. Cao ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 369
Author(s):  
Jianhui Mao ◽  
Wenjun Liu ◽  
Dongfang Li ◽  
Chenkai Zhang ◽  
Yi Ma

As an excellent multifunctional single crystal, potassium dihydrogen phosphate (KDP) is a well-known, difficult-to-process material for its soft-brittle and deliquescent nature. The surface mechanical properties are critical to the machining process; however, the characteristics of deformation behavior for KDP crystals have not been well studied. In this work, the strain rate effect on hardness was investigated on the mechanically polished tripler plane of a KDP crystal relying on nanoindentation technology. By increasing the strain rate from 0.001 to 0.1 s−1, hardness increased from 1.67 to 2.07 GPa. Hence, the strain rate sensitivity was determined as 0.053, and the activation volume of dislocation nucleation was 169 Å3. Based on the constant load-holding method, creep deformation was studied at various holding depths at room temperature. Under the spherical tip, creep deformation could be greatly enhanced with increasing holding depth, which was mainly due to the enlarged holding strain. Under the self-similar Berkovich indenter, creep strain could be reduced at a deeper location. Such an indentation size effect on creep deformation was firstly reported for KDP crystals. The strain rate sensitivity of the steady-state creep flow was estimated, and the creep mechanism was qualitatively discussed.


2009 ◽  
Vol 44 (8) ◽  
pp. 2119-2127 ◽  
Author(s):  
Y. C. Lu ◽  
G. P. Tandon ◽  
S. Putthanarat ◽  
G. A. Schoeppner

2006 ◽  
Vol 503-504 ◽  
pp. 31-36 ◽  
Author(s):  
Johannes Mueller ◽  
Karsten Durst ◽  
Dorothea Amberger ◽  
Matthias Göken

The mechanical properties of ultrafine-grained metals processed by equal channel angular pressing is investigated by nanoindentations in comparison with measurements on nanocrystalline nickel with a grain size between 20 and 400 nm produced by pulsed electrodeposition. Besides hardness and Young’s modulus measurements, the nanoindentation method allows also controlled experiments on the strain rate sensitivity, which are discussed in detail in this paper. Nanoindentation measurements can be performed at indentation strain rates between 10-3 s-1 and 0.1 s-1. Nanocrystalline and ultrafine-grained fcc metals as Al and Ni show a significant strain rate sensitivity at room temperature in comparison with conventional grain sized materials. In ultrafine-grained bcc Fe the strain rate sensitivity does not change significantly after severe plastic deformation. Inelastic effects are found during repeated unloading-loading experiments in nanoindentations.


Sign in / Sign up

Export Citation Format

Share Document