Thermal Spray Booth Design Guidelines[1]

2013 ◽  
pp. 163-178
Author(s):  
L. Pejryd ◽  
J. Wigren ◽  
N. Hanner

Abstract Reproducibility is a current challenge for the thermal spray industry. Reproducibility associated problems represent a large cost every year not only in terms of rejections and rework, but also in costs for destructive testing and decreased production flow. Thermal spray coatings are moving in the direction of being considered only as a "band aid" to becoming a design element. One of the prerequisites for such a development is an increase in reproducibility for thermal spray coatings. The purpose of this paper is to outline a vision aiming in the direction of a future "ultimate spray booth", where thermal spraying is as reproducible and reliable as machining, grinding or other production processes. A way to increase reproducibility and reliability in the future spray shop involves utilising major parts of IT - technology. This also includes active co-operation design-production in the pre-spray process. This paper will deal with areas such as: operation drawings and lists through multimedia techniques, education programs for operators and designers through multimedia techniques, CAD/CAM, Off-line programming and simulation, On-line diagnostics of flame (particle diagnostics) and coating (temperature & Acoustic emission measurements), on-line Statistical Process Control and Knowledge Based System techniques.


PCI Journal ◽  
2020 ◽  
Vol 65 (6) ◽  
pp. 35-61
Author(s):  
Chungwook Sim ◽  
Maher Tadros ◽  
David Gee ◽  
Micheal Asaad

Ultra-high-performance concrete (UHPC) is a special concrete mixture with outstanding mechanical and durability characteristics. It is a mixture of portland cement, supplementary cementitious materials, sand, and high-strength, high-aspect-ratio microfibers. In this paper, the authors propose flexural design guidelines for precast, prestressed concrete members made with concrete mixtures developed by precasters to meet minimum specific characteristics qualifying it to be called PCI-UHPC. Minimum specified cylinder strength is 10 ksi (69 MPa) at prestress release and 18 ksi (124 MPa) at the time the member is placed in service, typically 28 days. Minimum flexural cracking and tensile strengths of 1.5 and 2 ksi (10 and 14 MPa), respectively, according to ASTM C1609 testing specifications are required. In addition, strain-hardening and ductility requirements are specified. Tensile properties are shown to be more important for structural optimization than cylinder strength. Both building and bridge products are considered because the paper is focused on capacity rather than demand. Both service limit state and strength limit state are covered. When the contribution of fibers to capacity should be included and when they may be ignored is shown. It is further shown that the traditional equivalent rectangular stress block in compression can still be used to produce satisfactory results in prestressed concrete members. A spreadsheet workbook is offered online as a design tool. It is valid for multilayers of concrete of different strengths, rows of reinforcing bars of different grades, and prestressing strands. It produces moment-curvature diagrams and flexural capacity at ultimate strain. A fully worked-out example of a 250 ft (76.2 m) span decked I-beam of optimized shape is given.


Author(s):  
Y. Lahmar-Mebdoua ◽  
Armelle Vardelle ◽  
Pierre Fauchais ◽  
Dominique Gobin

2011 ◽  
Vol 65 (11) ◽  
pp. 1142-1146
Author(s):  
Masaya Nagai ◽  
Sadato Shigemura ◽  
Akihiko Yoshiya ◽  
Masanobu Yamanaka

Sign in / Sign up

Export Citation Format

Share Document