scholarly journals A Study on the Response of the Ionosphere to the Three Major Space Weather Events of 2015 Using a Meridional Chain of Ionosondes and GPS Receivers Over India

Author(s):  
S. Sripathi ◽  
Ram Singh
Author(s):  
Rajkumar Hajra ◽  
Bruce, T. Tsurutani ◽  
Gurbax, S. Lakhina

2008 ◽  
Vol 32 (2) ◽  
pp. 186-196
Author(s):  
Yue-hua Ma ◽  
You-wen He ◽  
Pin-xin Xu ◽  
Hai-bin Zhao

2020 ◽  
Vol 899 (1) ◽  
pp. 3
Author(s):  
Rajkumar Hajra ◽  
Bruce T. Tsurutani ◽  
Gurbax S. Lakhina

2020 ◽  
Vol 38 (4) ◽  
pp. 881-888
Author(s):  
Joyrles Fernandes de Moraes ◽  
Igo Paulino ◽  
Lívia R. Alves ◽  
Clezio Marcos Denardini

Abstract. The electric field induced in the Bolivia–Brazil gas pipeline (GASBOL) was calculated by using the distributed source line transmission (DSLT) theory during several space weather events. We used geomagnetic data collected by a fluxgate magnetometer located at São José dos Campos (23.2∘ S, 45.9∘ W). The total corrosion rate was calculated by using the Gummow (2002) methodology and was based on the assumption of a 1 cm hole in the coating of the pipeline. The calculations were performed at the ends of pipeline where the largest “out-of-phase” pipe-to-soil potential (PSP) variations were obtained. The variations in PSP during the 17 March 2015 geomagnetic storm have led to the greatest corrosion rate of the analyzed events. All the space weather events evaluated with high terminating impedance may have contributed to increases in the corrosion process. The applied technique can be used to evaluate the corrosion rate due to the high telluric activity associated with the geomagnetic storms at specific locations.


2020 ◽  
Author(s):  
Alberto Garcia-Rigo ◽  
Benedikt Soja

<p>Multiple space geodetic techniques are capable of measuring effects caused by space weather events. In particular, space weather events can cause ionospheric disturbances correlated with variations in the vertical total electron content (VTEC) or the electron density (Ne) of the ionosphere.</p><p>In this regard and in the context of the new Focus Area on Geodetic Space Weather Research within IAG’s GGOS (International Association of Geodesy; Global Geodetic Observing System), the Joint Working Group 3 on Improved understanding of space weather events and their monitoring by satellite missions has been created as part of IAG Commission 4, Sub-Commission 4.3 to run for the next four years.</p><p>Within JWG3, we expect investigating different approaches to monitor space weather events using the data from different space geodetic techniques and, in particular, combinations thereof. Simulations will be beneficial to identify the contribution of different techniques and prepare for the analysis of real data. Different strategies for the combination of data will also be investigated, in particular, the weighting of estimates from different techniques in order to increase the performance and reliability of the combined estimates. Furthermore, existing algorithms for the detection and prediction of space weather events will be explored and improved to the extent possible. Furthermore, the geodetic measurement of the ionospheric electron density will be complemented by direct observations from the Sun gathered from existing spacecraft, such as SOHO, ACE, SDO, Parker Solar Probe, among others. The combination and joint evaluation of multiple datasets with the measurements of space geodetic observation techniques (e.g. geodetic VLBI) is still a great challenge. In addition, other indications for solar activity - such as the F10.7 index on solar radio flux, SOLERA as EUV proxy or rate of Global Electron Content (dGEC)-, provide additional opportunities for comparisons and validation.</p><p>Through these investigations, we will identify the key parameters useful to improve real-time/prediction of ionospheric/plasmaspheric VTEC, Ne estimates, as well as ionospheric perturbations, in case of extreme solar weather conditions. In general, we will gain a better understanding of space weather events and their effect on Earth’s atmosphere and near-Earth environment.</p>


2020 ◽  
Vol 10 ◽  
pp. 58
Author(s):  
Luca Giovannelli ◽  
Francesco Berrilli ◽  
Daniele Calchetti ◽  
Dario Del Moro ◽  
Giorgio Viavattene ◽  
...  

By the continuous multi-line observation of the solar atmosphere, it is possible to infer the magnetic and dynamical status of the Sun. This activity is essential to identify the possible precursors of space weather events, such as flare or coronal mass ejections. We describe the design and assembly of TSST (Tor Vergata Synoptic Solar Telescope), a robotic synoptic telescope currently composed of two main full-disk instruments, a Hα telescope and a Potassium (KI D1) magneto-optical filter (MOF)-based telescope operating at 769.9 nm. TSST is designed to be later upgraded with a second MOF channel. This paper describes the TSST concepts and presents the first light observation carried out in February 2020. We show that TSST is a low-cost robotic facility able to achieve the necessary data for the study of precursors of space weather events (using the magnetic and velocity maps by the MOF telescope) and fast flare detection (by the Hα telescope) to support Space Weather investigation and services.


2013 ◽  
Vol 8 (S300) ◽  
pp. 500-501
Author(s):  
Larisa Trichtchenko

AbstractCoronal mass ejections (CME) and associated interplanetary-propagated solar wind disturbances are the established causes of the geomagnetic storms which, in turn, create the most hazardous impacts on power grids. These impacts are due to the large geomagnetically induced currents (GIC) associated with variations of geomagnetic field during storms, which, flowing through the transformer windings, cause extra magnetisation. That can lead to transformer saturation and, in extreme cases, can result in power blackouts. Thus, it is of practical importance to study the solar causes of the large space weather events. This paper presents the example of the space weather chain for the event of 5-6 November 2001 and a table providing complete overview of the largest solar events during solar cycle 23 with their subsequent effects on interplanetary medium and on the ground. This compact overview can be used as guidance for investigations of the solar causes and their predictions, which has a practical importance in everyday life.


Sign in / Sign up

Export Citation Format

Share Document