NEW ADVANCED MATERIALS FOR ENERGY PRODUCTION: THE ARC FUSION REACTOR AND MHD PHENOMENA IN THE FLIBE BREEDER

2019 ◽  
Vol 9 (3) ◽  
pp. 501-508
Author(s):  
Edoardo , Andrea Prato ◽  
◽  
Massimo Zucchetti ◽  
1979 ◽  
Vol 85-86 ◽  
pp. 65-69
Author(s):  
R. Matera ◽  
M. Biggio ◽  
G. Caprino ◽  
I. Crivelli-Visconti ◽  
F. Farfaletti-Casali ◽  
...  

Author(s):  
Anggi Kurniawan ◽  
Hiroaki Tsutsui

Fast-ions confinement is a prominent subject in developing nuclear fusion reactors due to its importance in sustaining the burning plasma and keeping energy production. However, confining them has proven to be difficult until now, and one of the reasons is that the inherent discrete magnetic field produces a magnetic ripple. A better understanding of fast-ions transport using appropriate numerical calculation tools needs to be developed to overcome such a challenge in the engineering aspect. This study revisited data collection of fast ion transport simulated under the ripple presence in a nuclear fusion device. The ion trajectories were followed using two orbit-following equation schemes, and the ripple-resonance island size in the Poincaré section was compared. The result showed that the island size obtained by each scheme was different when the particle resonates with a stronger ripple field and, proportionally, the diffusion coefficients are different. The physical meaning and consequence behind this discovery were discussed in this paper.


Metals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 907 ◽  
Author(s):  
Roberto Montanari ◽  
Alessandra Varone

The increasing demand for advanced materials in construction, transportation, communications, medicine, energy production, as well as in several other fields, is the driving force for investigating the processing–structure–property relationships [...]


Author(s):  
E. Ruedl ◽  
P. Schiller

The low Z metal aluminium is a potential matrix material for the first wall in fusion reactors. A drawback in the application of A1 is the rel= atively high amount of He produced in it under fusion reactor conditions. Knowledge about the behaviour of He during irradiation and deformation in Al, especially near the surface, is therefore important.Using the TEM we have studied Al disks of 3 mm diameter and 0.2 mm thickness, which were perforated at the centre by double jet polishing. These disks were bombarded at∽200°C to various doses with α-particles, impinging at any angle and energy up to 1.5 MeV at both surfaces. The details of the irradiations are described in Ref.1. Subsequent observation indicated that in such specimens uniformly distributed He-bubbles are formed near the surface in a layer several μm thick (Fig.1).After bombardment the disks were deformed at 20°C during observation by means of a tensile device in a Philips EM 300 microscope.


Author(s):  
W.A. Jacob ◽  
R. Hertsens ◽  
A. Van Bogaert ◽  
M. De Smet

In the past most studies of the control of energy metabolism focus on the role of the phosphorylation potential ATP/ADP.Pi on the regulation of respiration. Studies using NMR techniques have demonstrated that the concentrations of these compounds for oxidation phosphorylation do not change appreciably throughout the cardiac cycle and during increases in cardiac work. Hence regulation of energy production by calcium ions, present in the mitochondrial matrix, has been the object of a number of recent studies.Three exclusively intramitochondnal dehydrogenases are key enzymes for the regulation of oxidative metabolism. They are activated by calcium ions in the low micromolar range. Since, however, earlier estimates of the intramitochondnal calcium, based on equilibrium thermodynamic considerations, were in the millimolar range, a physiological correlation was not evident. The introduction of calcium-sensitive probes fura-2 and indo-1 made monitoring of free calcium during changing energy metabolism possible. These studies were performed on isolated mitochondria and extrapolation to the in vivo situation is more or less speculative.


Sign in / Sign up

Export Citation Format

Share Document