Scramble and Crosswalk Signal Timing

Author(s):  
Mark R. Virkler

A variety of methods have been developed for determining appropriate pedestrian crossing times at signalized intersections. Although many of these methods have useful applications, all have significant shortcomings when estimating the crossing time required under high-volume conditions and with two-way flow within a crosswalk. Existing methods are described. A field study conducted to address these shortcomings is then described. The results of the study are used to develop relationships to describe pedestrian flow at signalized crossings. Recommendations are then made to improve the signal timing parameters used for higher-volume pedestrian flows.

Author(s):  
Daniel J. Cook

Along urban and suburban arterials, closely-spaced signalized intersections are commonly used to provide access to adjacent commercial developments. Often, these signalized intersections are designed to provide full access to developments on both sides of the arterial and permit through, left-turn, and right-turn movements from every intersection approach. Traffic signal timing is optimized to reduce vehicle delay or provide progression to vehicles on the arterial, or both. However, meeting both of these criteria can be cumbersome, if not impossible, under high-demand situations. This research proposes a new design that consolidates common movements at three consecutive signalized intersections into strategic fixed locations along the arterial. The consolidation of common movements allows the intersections to cycle between only two critical phases, which, in turn, promotes shorter cycle lengths, lower delay, and better progression. This research tested the consolidated intersection concept by modeling a real-world site in microsimulation software and obtaining values for delay and travel time for multiple vehicle paths along the corridor and adjacent commercial developments in both existing and proposed conditions. With the exception of unsignalized right turns at the periphery of the study area, all non-displaced routes showed a reduction in travel time and delay. Additional research is needed to understand how additional travel through the commercial developments adjacent to the arterial may effect travel time and delay. Other expected benefits of the proposed design include a major reduction in conflict points, shorter pedestrian crossing and wait times, and the opportunity to provide pedestrian refuge areas in the median.


Transport ◽  
2016 ◽  
Vol 33 (1) ◽  
pp. 249-259 ◽  
Author(s):  
Sankaran Marisamynathan ◽  
Perumal Vedagiri

Enhancing pedestrian safety and improving the design standards of pedestrian facilities at signalized intersection requires a clear understanding of pedestrian delay model and pedestrian crossing behaviours under mixed traffic condition. The existing delay models do not consider the behavioural constrains of pedestrians. This research has been undertaken with the aim of developing a suitable pedestrian delay model for signalized intersection crosswalks, based on considering actual pedestrian crossing behaviours. The required model parameters were extracted from the video-graphic survey conducted for the selected four signalized intersections in Mumbai (India). Crossing behaviours of pedestrians were examined through field data in terms of pedestrian arrival pattern, crossing speed, compliance behaviour and pedestrian–vehicular interactions. Based on pedestrian crossing behaviour analysis results, two new pedestrian delay estimation models were developed and the models were validated by comparing with field and existing model values. The performance level of the proposed models is showing more precise and reliable solutions. The first pedestrian delay model is developed on the basis of compliance behaviour, has two components, such as waiting time delay and crossing time delay. This model can be used to evaluate pedestrian Level Of Service (LOS) and signal timing optimization. The second developed pedestrian delay model is based on noncompliance behaviour, has three components, such as waiting time delay, crossing time delay, and pedestrian–vehicular interaction delay. This model can also be used to evaluate the quality of pedestrian flow, estimating accurate pedestrian delay and LOS for local conditions, which is representative of the prevailing pedestrian condition.


Author(s):  
Daniel I. Rubins ◽  
Susan Handy

The current state of the practice for traffic signal timing does not account for bicyclists in determining the minimum green times or clearance intervals. Like pedestrians, bicyclists need sufficient time to cross an intersection safely. However, this need must be balanced against possible delays for motorist traffic. Accurate estimates of crossing times for bicyclists are thus essential to the safe and efficient design of traffic signals. This paper presents data on bicycle crossing times for different crossing distances near the campus of the University of California at Davis and provides a methodology for measuring bicycle crossing times that other researchers can use. The crossing time and speed data collected for this project can be used to develop guidelines, in conjunction with AASHTO equations, for estimation of minimum green times and clearance intervals as a function of crossing distance. Ten signalized intersections with various motorist and bicycle traffic volumes were videotaped for a total of approximately 11 h. The observed crossing times and calculated speeds for standing, rolling, and quasi-rolling starts are presented. The importance of the physical design of intersections is briefly discussed. Important findings are that the crossing times vary widely for each crossing distance and that the 2nd and 15th percentile speeds are considerably slower than the speeds suggested by AASHTO. These slower speeds may suggest that longer crossing times should be used in signal design to ensure that 98%, or even 85%, of bicyclists will be able to clear an intersection safely.


Author(s):  
Mark R. Virkler

Pedestrian delay at signalized intersections must often be considered when describing the quality of pedestrian flow in downtown and other busy locations. Pedestrian delay at signals is usually modeled with the assumption that ( a) pedestrian arrivals are random and ( b) pedestrians proceed only when a Walk signal provides the right-of-way. To reduce their own delay, some pedestrians will at times proceed without a Walk indication. The range of delay reductions that pedestrians achieve by violating the pedestrian signal was examined through a field study of 18 crosswalks. Delays experienced by pedestrians were found to be 22 percent lower than those that would be predicted with complete signal compliance. Although relatively small reductions in delay were due to crossings while the signal was effectively red, the majority of delay reduction was due to people who began their crossing during the flashing Don’t Walk phase. The number of pedestrians who entered crosswalks during the flashing Don’t Walk phases was 69 percent of the number who would be expected to arrive at the curb during these periods if arrivals were random. It is inferred that some pedestrians increase their speeds to enter during the flashing Don’t Walk phase, rather than wait for the next Walk interval. A modification to a delay equation was developed to provide an improved estimate of pedestrian delay at signalized intersections.


Author(s):  
Dmitriy Nemchinov

The article presents an analysis of positive practices for ensuring the safety of pedestrians at the inter-section of the city streets carriageway, as well as a description of some innovations of regulatory and tech-nical documents, including an increased number of cases when a safety island can be arranged at a pedestri-an crossing. requirements for providing visibility at a pedestrian crossing to determine the minimum distance of visibility at a pedestrian crossing based on the time required pedestrians for crossing the roadway, recommended options for using ground unregulated pedestrian crossings on trapezoidal artificial irregularities according to GOST R 52605; traffic flow) and Z-shaped (also in the direction of the traffic flow), the requirements for the size of the securi-ty island have been established to allow put bicycle inside of safety island, a recommended set of measures to reduce the vehicle speed and describes the types of activities and describes a method of their application, describes methods zones device with reduced travel speed - residential and school zones, set requirements for turboroundabouts and methods of their design.


2019 ◽  
Vol 11 (4) ◽  
pp. 168781401984183 ◽  
Author(s):  
Zhuping Zhou ◽  
Sixian Liu ◽  
Wenxin Xu ◽  
Ziyuan Pu ◽  
Shuichao Zhang ◽  
...  

2021 ◽  
Vol 15 (1) ◽  
pp. 210-216
Author(s):  
Khaled Shaaban

Background: Pedestrian non-compliance at signalized crossings is unsafe and considered one of the causes of pedestrian crashes. The speed limit on most major urban roads is 60 km/hr or less. However, the speed on some urban roads is higher in some countries. In this case, the situation is more unsafe and increases the possibility of fatal injuries or fatalities in the case of a crash. Therefore, it is expected that the pedestrians will be more cautious on these roads. Aim: This study aims to explore pedestrian compliance at signalized intersections on major arterials with 80 km/hr speeds in Qatar. Methods: Video data were collected for pedestrian movements at multiple intersections. Results: The study reported a 68.1 percent compliance rate at the study locations. The results also revealed that 14.6 percent of the pedestrians crossed during the Flashing Don’t Walk interval and 17.3 percent crossed during the Steady Don’t Walk interval. These rates are considered high compared to other countries. Several variables that may influence pedestrians’ behavior were investigated. Binary and ordinal logistic regression models were developed to describe the pedestrian crossing behavior as a function of these variables. Conclusion: Male and middle-age pedestrians were more likely to cross during these two intervals. The analysis showed that female pedestrians, elder pedestrians, pedestrians crossing in groups, pedestrians waiting before crossing, and pedestrians crossing against a flow of other pedestrians are more likely to comply and cross during the Walk interval compared to other groups. Several solutions were proposed in the study to increase compliance rates.


Sign in / Sign up

Export Citation Format

Share Document