Client Referral, Ridership, and Financial Tracking [CRRAFT] Transit Management System: CRRAFTing a Bridge to Coordinated Interagency Transportation

Author(s):  
Judith M. Espinosa ◽  
Matthew R. Baca ◽  
Amy D. Estelle ◽  
Nancy Bennett ◽  
Geri Knoebel ◽  
...  

From the 1990s on, a growing number of federal and state human service programs have identified transportation as an allowable, often vital, support service for clients. State human services agencies in New Mexico are improving clients’ transportation options either by funding the expansion of local transit operators’ service areas and hours, or the starting up of new transit systems. Agencies providing this new transportation funding require specific reports based on the human service delivery model. Because services are client-based, the reports include the number of unique clients served, number of trips provided to each client, trip purposes, and costs. For New Mexico rural transit systems that operate under FTA Section 5311 guidelines, services and reports are trip based. To bridge the gap between human service agency and rural transit system cultures, the Alliance for Transportation Research Institute of the University of New Mexico developed a web-based software program, the Client Referral, Ridership, and Financial Tracking (CRRAFT) Transit Management System. The software integrates human service client transportation referral and service delivery with daily rural public transit operations, provides passengers with increased seamlessness in transportation service, and generates financial and client tracking reports that meet each funding agency’s criteria, including those required by FTA. The CRRAFT lessens the burden on small transit systems that have limited administrative staff of two to three people. The software also provides funding agencies with tools to facilitate planning and to maintain administrative and fiscal accountability.

Author(s):  
Judith M. Espinosa ◽  
Eric F. Holm ◽  
Mary E. White

New Mexico is among the first states in the United States to develop, implement, and deploy contactless, smart card technology in a rural area. The Alliance for Transportation Research Institute, working with the New Mexico Department of Transportation's Public Transportation Programs Bureau, developed the Intelligent, Coordinated Transit (ICTransit) smart card technology and the Client, Referral, Ridership, and Financial Tracking (CRRAFT) software. The U.S. Department of Transportation's FTA–FHWA Joint Program Office provided federal funding for the project. The ICTransit smart card functions as a universal use electronic fare card, enabling passengers to transfer between transit providers to access jobs, education, and health care beyond their local rural communities. ICTransit's Global Positioning System receiver and Pocket PC capture the time and location that passengers board and exit the vehicle and the passenger miles traveled on the vehicle. The CRRAFT software system for express scheduling, automatic generation of monthly financial reports, and onboard tracking of ridership provides increased efficiency in rural areas. The ICTransit system with CRRAFT can overcome barriers to coordinated interagency transportation and provide increased access and mobility to all, but especially to those underserved by public transportation. ICTransit with CRRAFT can empower states to build coordinated transportation networks that provide safe and seamless movement of people and enhance the quality of life.


2019 ◽  
Author(s):  
Chem Int

This study investigated the impact of Quality Management System (QMS) on effective service delivery in Oil and Gas Servicing Companies in selected firms in Port Harcourt, Nigeria. The opinion of 50 respondents were sampled using questionnaires, interviews as well as observation from journals and texts used in this work to examine the Quality Management System (QMS) of the selected firms. Using simple percentages and the Chi-square (X2) test of hypotheses, it was hypothetically established that the implementation of QMS practices, has impacted the work process, procedure and improvement on quality over the years in the Oil and Gas Servicing companies in Port Harcourt Nigeria. The research identified an adopted use of Failure Mode and Effect Analysis (FMEA) tool as a continual quality improvement initiative developed in the local content oil and gas servicing operation for equipment handling, management and to drive sustained improved performance quality processes as a key driver of a progressive that will place local content companies as an options for producing companies and at par with multinational oil and gas companies.


Author(s):  
Charalampos Sipetas ◽  
Eric J. Gonzales

Flexible transit systems are a way to address challenges associated with conventional fixed route and fully demand responsive systems. Existing studies indicate that such systems are often planned and designed without established guidelines, and optimization techniques are rarely implemented on actual flexible systems. This study presents a hybrid transit system where the degree of flexibility can vary from a fixed route service (with no flexibility) to a fully flexible transit system. Such a system is expected to be beneficial in areas where the best transit solution lies between the fixed route and fully flexible systems. Continuous approximation techniques are implemented to model and optimize the stop spacing on a fixed route corridor, as well as the boundaries of the flexible region in a corridor. Both user and agency costs are considered in the optimization process. A numerical analysis compares various service areas and demand densities using input variables with magnitudes similar to those of real-world case studies. Sensitivity analysis is performed for service headway, percent of demand served curb-to-curb, and user and agency cost weights in the optimization process. The analytical models are evaluated through simulations. The hybrid system proposed here achieves estimated user benefits of up to 35% when compared with fixed route systems, under different case scenarios. Flexible systems are particularly beneficial for serving corridors with low or uncertain demand. This provides value for corridors with low demand density as well as communities in which transit ridership has dropped significantly because of the COVID-19 pandemic.


1995 ◽  
Vol 16 (3) ◽  
pp. 247-253 ◽  
Author(s):  
Michael P. Shea ◽  
John J. Lewko ◽  
Robert J. Flynn ◽  
Kathryn A. Boschen ◽  
Richard Volpe

Author(s):  
Andrew Guthrie ◽  
Yingling Fan ◽  
Kirti Vardhan Das

Accessibility analysis can have important implications for understanding social equity in transit planning. The emergence and the increasingly broad acceptance of the general transit feed specification (GTFS) format for transit route, stop, and schedule data have revolutionized transit accessibility research by providing researchers with a convenient, publicly available source of data interoperable with common geographic information system (GIS) software. Existing approaches to GTFS-based transit analysis, however, focus on currently operating transit systems. With major transit expansions across the nation and around the world increasing in number and ambition, understanding the accessibility impacts of proposed projects in their early planning stages is crucial to achieving the greatest possible social benefit from these massive public investments. This paper describes the development of a hypothetical transit network based on current GTFS data and proposed 2040 transit improvements for the Twin Cities region of Minneapolis–Saint Paul, Minnesota, as well as its use as a sketch planning tool in exploring the proposed system’s impacts on access to job vacancies from historically disadvantaged areas. This research demonstrates the importance of accessibility analysis in planning a transit system that increases opportunity for marginalized workers and concludes by calling for broader, easier access to accessibility analysis for practitioners and community groups to refine the early stages of the transit planning process and democratize an increasingly crucial transit planning tool.


Author(s):  
Kaijun Zhu ◽  
Yu Qian ◽  
J. Riley Edwards ◽  
Bassem O. Andrawes

A rail joint typically is one of the weakest elements of a track superstructure, primarily because of discontinuities in its geometric and mechanical properties and the high-impact loads induced by these discontinuities. The development of continuously welded rail has significantly reduced the number of rail joints, but many bolted joints remain installed in rail transit systems. Because of the unique loading environment of a rail transit system (especially high-frequency, high-repetition loads), defects related to bolted rail joints (e.g., joint bar failures, bolt hole cracks, and cracks in the upper fillet) continue to cause service failures and can pose derailment risks. Recent research in the Rail Transportation and Engineering Center at the University of Illinois at Urbana–Champaign has focused on investigating crack initiation in the bolt hole and fillet areas of bolted rail joints. Stress distribution was investigated at the rail-end bolt hole and upper fillet areas of standard, longer, and thicker joint bars under static loading conditions. Numerical simulations were organized into a comprehensive parametric analysis performed with finite element modeling. Preliminary results indicated that the longer joint bar performed similarly to the standard joint bar but the thicker joint bar reduced rail vertical displacement and rail upper fillet stresses compared with the standard joint bar. However, the thicker joint bar also may generate higher stresses at the rail-end bolt hole. Additionally, joint bar performance was dependent on the rail profile and bolt hole location.


Sign in / Sign up

Export Citation Format

Share Document