Driver Understanding of Potential All-White Pavement Marking Patterns

Author(s):  
H. Gene Hawkins ◽  
Angelia H. Parham ◽  
Katie N. Womack
Author(s):  
Angelia H. Parham ◽  
Katie N. Womack ◽  
H. Gene Hawkins

Driver understanding of the current U.S. system of yellow–white pavement markings was assessed through a driver survey. The survey was used to evaluate drivers’ ability to describe the pavement marking color code, drivers’ reliance on pavement marking patterns when interpreting marking messages, and drivers’ reliance on pavement marking color when interpreting marking messages. Researchers surveyed 851 drivers in 5 states, with respondents representing 47 states, the District of Columbia, and Puerto Rico. The survey results indicate that drivers tend to use signs and other traffic as the primary cue to determine whether a road is one-way or two-way. A substantial proportion of respondents had an understanding of the use of marking color to differentiate between one-way and two-way roads, but this knowledge is not the primary tool that drivers use to distinguish the direction of travel on a road. Approximately 75% of the drivers surveyed understood the basic concept that a single broken yellow line separates opposing traffic on a two-lane road. The presence of a solid line (either double solid or solid and broken) in the centerline increases comprehension of directional flow to approximately 85%; more than 90% of the drivers surveyed understood that a solid line (either double solid or solid and broken) prohibits passing. Almost 95% of drivers indicated that passing is permitted with a broken line. The survey results indicate that the yellow–white pavement marking system is better understood than previously believed.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1737
Author(s):  
Ane Dalsnes Storsæter ◽  
Kelly Pitera ◽  
Edward McCormack

Pavement markings are used to convey positioning information to both humans and automated driving systems. As automated driving is increasingly being adopted to support safety, it is important to understand how successfully sensor systems can interpret these markings. In this effort, an in-vehicle lane departure warning system was compared to data collected simultaneously from an externally mounted mobile retroreflectometer. The test, performed over 200 km of driving on three different routes in variable lighting conditions and road classes found that, depending on conditions, the retroreflectometer could predict whether the car’s lane departure systems would detect markings in 92% to 98% of cases. The test demonstrated that automated driving systems can be used to monitor the state of pavement markings and can provide input on how to design and maintain road infrastructure to support automated driving features. Since data about the condition of lane marking from multiple lane departure warning systems (crowd-sourced data) can provide input into the pavement marking management systems operated by many road owners, these findings also indicate that these automated driving sensors have an important role in enhancing the maintenance of pavement markings.


2021 ◽  
Vol 6 (2) ◽  
pp. 18
Author(s):  
Alireza Sassani ◽  
Omar Smadi ◽  
Neal Hawkins

Pavement markings are essential elements of transportation infrastructure with critical impacts on safety and mobility. They provide road users with the necessary information to adjust driving behavior or make calculated decisions about commuting. The visibility of pavement markings for drivers can be the boundary between a safe trip and a disastrous accident. Consequently, transportation agencies at the local or national levels allocate sizeable budgets to upkeep the pavement markings under their jurisdiction. Infrastructure asset management systems (IAMS) are often biased toward high-capital-cost assets such as pavements and bridges, not providing structured asset management (AM) plans for low-cost assets such as pavement markings. However, recent advances in transportation asset management (TAM) have promoted an integrated approach involving the pavement marking management system (PMMS). A PMMS brings all data items and processes under a comprehensive AM plan and enables managing pavement markings more efficiently. Pavement marking operations depend on location, conditions, and AM policies, highly diversifying the pavement marking management practices among agencies and making it difficult to create a holistic image of the system. Most of the available resources for pavement marking management focus on practices instead of strategies. Therefore, there is a lack of comprehensive guidelines and model frameworks for developing PMMS. This study utilizes the existing body of knowledge to build a guideline for developing and implementing PMMS. First, by adapting the core AM concepts to pavement marking management, a model framework for PMMS is created, and the building blocks and elements of the framework are introduced. Then, the caveats and practical points in PMMS implementation are discussed based on the US transportation agencies’ experiences and the relevant literature. This guideline is aspired to facilitate PMMS development for the agencies and pave the way for future pavement marking management tools and databases.


2021 ◽  
Author(s):  
Zhihua Zhang ◽  
Xinxiu Zhang ◽  
Shuwen Yang ◽  
Jun Yang

Author(s):  
Bouzid Choubane ◽  
Joshua Sevearance ◽  
Charles Holzschuher ◽  
James Fletcher ◽  
Chieh (Ross) Wang

The visibility of pavement markings is an important aspect of a safe transportation system as the markings convey vital roadway warnings and guidance information to the traveling public. Therefore, it is beneficial to maintain acceptable visibility levels of markings on pavements under all weather and lighting conditions. To ensure the intended in-service visibility level is adequately maintained, the reflectivity must be monitored and quantified accordingly. Historically, visibility or retroreflectivity of in-service pavement markings has been measured with handheld devices and visual inspections. However, visual surveys are considered subjective and the handheld measurements are tedious and potentially hazardous. Consequently, the Florida Department of Transportation (FDOT) has focused on the use of a non-contact technology capable of assessing pavement markings continuously at highway speeds with improved safety and efficiency. The use of mobile technology for measuring reflectivity has allowed FDOT to develop and, subsequently, implement a Pavement Marking Management System (PMMS) to improve the safety and nighttime visibility of its roadways. Implementation of such a system provides an efficient and less subjective methodology to identify conditions that are detrimental to roadway safety, and strategize mitigating solutions including the selection of appropriate materials and application techniques. The system will ultimately result in an effective use of state funds while ensuring the safety of the traveling public. This paper presents a description of the Florida Pavement Markings Management System and its subsequent implementation including FDOT’s effort to ensure the quality, consistency, repeatability, and accessibility of statewide pavement marking retroreflectivity data.


Author(s):  
Neal Hawkins ◽  
Omar Smadi ◽  
Zach Hans ◽  
Thomas H. Maze

Author(s):  
Timothy P. Barrette ◽  
Adam M. Pike

Raised retroreflective pavement markers (RRPMs) are commonly used to provide nighttime delineation of roadways. Although RRPMs are visible during dry conditions, they provide their greatest benefit during wet-night conditions, when typical pavement markings become flooded and lose their retroreflectivite properties. Naturally, the retroreflectivity of RRPMs degrades over time as a result of traffic, ultraviolet light, precipitation, and roadway maintenance activities. Subsequently, it is necessary to examine the relationship between driver performance and the condition of the RRPMs. To assess visibility relative to RRPM condition, study participants rode in the passenger seat of a vehicle operated by a member of the research team, traveling at approximately 15 mph, for two laps around a closed course. Throughout each lap of the course, nine treatments consisting of RRPMs or preformed pavement marking tape of various retroreflectivity levels diverged from a center line to either the right or left. Participants indicated when they could tell which direction the treatment diverged, which was recorded using a GPS unit. A generalized linear model was estimated on a dataset constructed by pairing the observed distances from various treatments with demographic information about each participant. The analysis indicates the distance at which a particular treatment would be visible, which can then be converted to preview time to assess treatment adequacy for a variety of speeds. The RRPM treatments generally provided adequate preview time for older drivers based on the extant literature; however, the preformed pavement marking tape was less adequate at higher speeds and under overhead lighting.


Author(s):  
Helmut T. Zwahlen ◽  
Tom Schnell ◽  
Norbert Johnson ◽  
Neil Hodson ◽  
Tim Donahue

Author(s):  
David A. Noyce ◽  
Daniel B. Fambro ◽  
Kent C. Kacir

At least four variations of the permitted indication in protected/permitted left-turn (PPLT) control have been developed in an attempt to improve the level of driver understanding and safety. These variations replace the green ball permitted indication with a flashing red ball, a flashing yellow ball, a flashing red arrow, or a flashing yellow arrow indication. In addition, the Manual on Uniform Traffic Control Devices allows several PPLT signal display arrangements. The variability in indication and arrangement has led to a myriad of PPLT displays throughout the United States. The level of driver understanding related to each PPLT display type, and the associated impact on traffic operations and safety, has not been quantified. A study was conducted to evaluate the operational characteristics associated with different PPLT signal displays. Specifically, the study quantified saturation flow rate, start-up lost time, response time, and follow-up headway associated with selected PPLT displays. No differences in saturation flow rate and start-up lost time were found due to the type of PPLT signal display. Saturation flow rates ranged from 1,770 to 2,400 vehicles per hour of green per lane and were related to differences in driver behavior between geographic locations. The variation in start-up lost time and response time between locations was primarily related to differences in phase sequence. The flashing red permitted indications were associated with the longest follow-up headway times, since drivers are required to stop before turning left with a flashing red permitted indication. The shortest follow-up headway was associated with the five-section cluster display using a green ball indication.


Sign in / Sign up

Export Citation Format

Share Document