scholarly journals Trajectory Segmentation Map-Matching Approach for Large-Scale, High-Resolution GPS Data

Author(s):  
Lei Zhu ◽  
Jacob R. Holden ◽  
Jeffrey D. Gonder

With the development of smartphones and portable GPS devices, large-scale, high-resolution GPS data can be collected. Map matching is a critical step in studying vehicle driving activity and recognizing network traffic conditions from the data. A new trajectory segmentation map-matching algorithm is proposed to deal accurately and efficiently with large-scale, high-resolution GPS trajectory data. The new algorithm separated the GPS trajectory into segments. It found the shortest path for each segment in a scientific manner and ultimately generated a best-matched path for the entire trajectory. The similarity of a trajectory segment and its matched path is described by a similarity score system based on the longest common subsequence. The numerical experiment indicated that the proposed map-matching algorithm was very promising in relation to accuracy and computational efficiency. Large-scale data set applications verified that the proposed method is robust and capable of dealing with real-world, large-scale GPS data in a computationally efficient and accurate manner.

2021 ◽  
pp. 1-16
Author(s):  
Xiaohan Wang ◽  
Pei Wang ◽  
Weilong Chen ◽  
Wangwu Hu ◽  
Long Yang

Many location-based services require a pre-processing step of map matching. Due to the error of the original position data and the complexity of the road network, the matching algorithm will have matching errors when the complex road network is implemented, which is therefore challenging. Aiming at the problems of low matching accuracy and low efficiency of existing algorithms at Y-shaped intersections and roundabouts, this paper proposes a space-time-based continuous window average direction feature trajectory map matching algorithm (STDA-matching). Specifically, the algorithm not only adaptively generates road network topology data, but also obtains more accurate road network relationships. Based on this, the transition probability is calculated by using the average direction feature of the continuous window of the track points to improve the matching accuracy of the algorithm. Secondly, the algorithm simplifies the trajectory by clustering the GPS trajectory data aggregation points to improve the matching efficiency of the algorithm. Finally, we use a real and effective data set to compare the algorithm with the two existing algorithms. Experimental results show that our algorithm is effective.


2017 ◽  
Vol 20 (2) ◽  
pp. 1123-1134 ◽  
Author(s):  
Hongyu Wang ◽  
Jin Li ◽  
Zhenshan Hou ◽  
Ruochen Fang ◽  
Wenbo Mei ◽  
...  

2017 ◽  
Vol 10 (5) ◽  
pp. 2031-2055 ◽  
Author(s):  
Thomas Schwitalla ◽  
Hans-Stefan Bauer ◽  
Volker Wulfmeyer ◽  
Kirsten Warrach-Sagi

Abstract. Increasing computational resources and the demands of impact modelers, stake holders, and society envision seasonal and climate simulations with the convection-permitting resolution. So far such a resolution is only achieved with a limited-area model whose results are impacted by zonal and meridional boundaries. Here, we present the setup of a latitude-belt domain that reduces disturbances originating from the western and eastern boundaries and therefore allows for studying the impact of model resolution and physical parameterization. The Weather Research and Forecasting (WRF) model coupled to the NOAH land–surface model was operated during July and August 2013 at two different horizontal resolutions, namely 0.03 (HIRES) and 0.12° (LOWRES). Both simulations were forced by the European Centre for Medium-Range Weather Forecasts (ECMWF) operational analysis data at the northern and southern domain boundaries, and the high-resolution Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) data at the sea surface.The simulations are compared to the operational ECMWF analysis for the representation of large-scale features. To analyze the simulated precipitation, the operational ECMWF forecast, the CPC MORPHing (CMORPH), and the ENSEMBLES gridded observation precipitation data set (E-OBS) were used as references.Analyzing pressure, geopotential height, wind, and temperature fields as well as precipitation revealed (1) a benefit from the higher resolution concerning the reduction of monthly biases, root mean square error, and an improved Pearson skill score, and (2) deficiencies in the physical parameterizations leading to notable biases in distinct regions like the polar Atlantic for the LOWRES simulation, the North Pacific, and Inner Mongolia for both resolutions.In summary, the application of a latitude belt on a convection-permitting resolution shows promising results that are beneficial for future seasonal forecasting.


2020 ◽  
Author(s):  
Vera Thiemig ◽  
Peter Salamon ◽  
Goncalo N. Gomes ◽  
Jon O. Skøien ◽  
Markus Ziese ◽  
...  

<p>We present EMO-5, a Pan-European high-resolution (5 km), (sub-)daily, multi-variable meteorological data set especially developed to the needs of an operational, pan-European hydrological service (EFAS; European Flood Awareness System). The data set is built on historic and real-time observations coming from 18,964 meteorological in-situ stations, collected from 24 data providers, and 10,632 virtual stations from four high-resolution regional observational grids (CombiPrecip, ZAMG - INCA, EURO4M-APGD and CarpatClim) as well as one global reanalysis product (ERA-Interim-land). This multi-variable data set covers precipitation, temperature (average, min and max), wind speed, solar radiation and vapor pressure; all at daily resolution and in addition 6-hourly resolution for precipitation and average temperature. The original observations were thoroughly quality controlled before we used the Spheremap interpolation method to estimate the variable values for each of the 5 x 5 km grid cells and their affiliated uncertainty. EMO-5 v1 grids covering the time period from 1990 till 2019 will be released as a free and open Copernicus product mid-2020 (with a near real-time release of the latest gridded observations in future). We would like to present the great potential EMO-5 holds for the hydrological modelling community.</p><p> </p><p>footnote: EMO = European Meteorological Observations</p>


2012 ◽  
Vol 457-458 ◽  
pp. 1213-1218 ◽  
Author(s):  
Zhen Xing Zhu ◽  
Jian Ping Xing ◽  
De Qiang Wang

Current map-matching algorithms consider more about the common plain road networks. The overpass always be ignored or treated as normal intersection without considering its complex topological structure. In order to fill this gap in map-matching area, the POMM (Precise Overpass Map-matching Model and Algorithm) is proposed in this paper. A novel overpass model is built for the overpasses map-matching algorithm. This model divided the overpass into straight roads and curve ones which consist of a set of directional points. According to the match degree for each straight road or directional point, the optimum road can be selectd from the candidate roads. Finally, the vehicle can be matched to the actual position on the optimum road. Experiment results of Jinan Bayi overpass using the actual GPS data shows that the algorithm has efficiency in accuracy (over 95%) and can precisely find the actual position of the vehicle in the overpass road, especially for the curve roads.


2019 ◽  
Vol 11 (5) ◽  
pp. 1429 ◽  
Author(s):  
Chengming Li ◽  
Zhaoxin Dai ◽  
Weixiang Peng ◽  
Jianming Shen

Location-based service (LBS) technologies provide a new perspective for the analysis of the spatiotemporal dynamics of urban systems. Previous studies have been performed using data from mobile communications, public transport vehicles (taxis and buses), wireless hotspots and shared bicycles. However, corresponding analyses based on shared electric bicycle (e-bike) have not yet been reported in the literature. Data cleaning and extraction of the origin-destination (O-D) are prerequisites for the study of the spatiotemporal patterns of urban systems. In this study, based on a dataset of a week of shared e-bike GPS data in the city of Tengzhou (Shandong Province), sparse characteristics of discontinuities and nonuniformities of the GPS trajectory and a lack of riding status are observed. Based on the characteristics and the actual road, we proposed a method for the extraction of O-D pairs for every trajectory segment from continuous and stateless trajectory GPS data. This method cleans the incomplete and invalid trajectory records, which is suitable for sparse trajectory data. A week of shared e-bike GPS data in Tengzhou is scrubbed and, by the sampling method, the extraction accuracy of 91% is verified. We provide preliminary cleaning rules for sparse trajectory shared e-bike data for the first time, which are highly reliable and suitable for data mining from other forms of sparse GPS trajectory data.


Sign in / Sign up

Export Citation Format

Share Document