scholarly journals Effect of Erwinia amylovora infection on peroxidase enzyme activity in resistant apple cultivars

2004 ◽  
Vol 10 (3) ◽  
Author(s):  
K. Kása ◽  
M. Hevesi ◽  
M. G. Tóth ◽  
É. Stefanovits-Bányai

Two apple cultivars that display enhanced resistance to fire blight (causal agent: Erwinia amylovora) were selected. The aim of the present study was to characterize the peroxidase (POD) enzyme activity of `Szemes alma' (a historical cultivar) and MR-03, (a Hungarian multiresistant hybrid of 'Prima') and compare them to susceptible 'Jonathan M 40' and resistant 'Remo' controls. Peroxides enzyme activity during E. amylovora infections was investigated in artificially infected apple shoots. Increases in enzyme activities were observed in a `Jonathan M40' and in 'Remo', MR-03, `Szemes alma' cultivars. There was a consistent relationship between total enzyme activity and fire blight disease severity. High activity of the peroxidase was positively correlated with the degree of resistance to fire blight. A general hypothesis that POD activity is related to fire blight susceptibility/resistance is supported by our results.

2004 ◽  
Vol 10 (3) ◽  
Author(s):  
Kása K. ◽  
Hevesi M. ◽  
G. Tóth M. ◽  
Stefanovits-Bányai É.

Two apple cultivars that display enhanced resistance to fire blight (causal agent: Erwinia amylovora) were selected. The aim of the present study was to characterize the peroxidase (POD) enzyme activity of `Szemes alma' (a historical cultivar) and MR-03, (a Hungarian multiresistant hybrid of 'Prima') and compare them to susceptible 'Jonathan M 40' and resistant 'Remo' controls. Peroxides enzyme activity during E. amylovora infections was investigated in artificially infected apple shoots. Increases in enzyme activities were observed in a `Jonathan M40' and in 'Remo', MR-03, `Szemes alma' cultivars. There was a consistent relationship between total enzyme activity and fire blight disease severity. High activity of the peroxidase was positively correlated with the degree of resistance to fire blight. A general hypothesis that POD activity is related to fire blight susceptibility/resistance is supported by our results.


2019 ◽  
Author(s):  
Anita Kurilla ◽  
Timea Toth ◽  
Laszlo Dorgai ◽  
Zsuzsanna Darula ◽  
Tamas Lakatos ◽  
...  

AbstractTo attract pollinators many angiosperms secrete stigma exudate and nectar in their flowers. As these nutritious fluids are ideal infection points for pathogens, both secretions contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia resistant apples are not available, certain cultivars are tolerant. It was reported that in stigma infection assay, the ‘Freedom’ cultivar was Erwinia tolerant while the ‘Jonagold’ was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed we found that an acidic chitinase III protein (Machi3-1) selectively accumulates in the nectar and stigma of the ‘Freedom’ cultivar. We demonstrate that MYB binding site containing repeats of the ‘Freedom’ Machi3-1 promoter are responsible for the strong nectar- and stigma-specific expression. As we found that in vitro the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 contribute to the tolerance by inhibiting Erwinia multiplication in the stigma exudate and in the nectar. We show that the Machi3-1 allele was introgressed from Malus floribunda 821 into different apple cultivars including the ‘Freedom’.HighlightCertain apple cultivars accumulate to high levels in their nectar and stigma an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora


Planta ◽  
2019 ◽  
Vol 251 (1) ◽  
Author(s):  
Anita Kurilla ◽  
Timea Toth ◽  
Laszlo Dorgai ◽  
Zsuzsanna Darula ◽  
Tamas Lakatos ◽  
...  

Abstract Main conclusion Certain apple cultivars accumulate to high levels in their nectar and stigma exudate an acidic chitinase III protein that can protect against pathogens including fire blight disease causing Erwinia amylovora. Abstract To prevent microbial infections, flower nectars and stigma exudates contain various antimicrobial compounds. Erwinia amylovora, the causing bacterium of the devastating fire blight apple disease, is the model pathogen that multiplies in flower secretions and infects through the nectaries. Although Erwinia-resistant apples are not available, certain cultivars are tolerant. It was reported that in flower infection assay, the ‘Freedom’ cultivar was Erwinia tolerant, while the ‘Jonagold’ cultivar was susceptible. We hypothesized that differences in the nectar protein compositions lead to different susceptibility. Indeed, we found that an acidic chitinase III protein (Machi3-1) selectively accumulates to very high levels in the nectar and the stigma exudate of the ‘Freedom’ cultivar. We show that three different Machi3-1 alleles exist in apple cultivars and that only the 5B-Machi3-1 allele expresses the Machi3-1 protein in the nectar and the stigma exudate. We demonstrate that the 5B-Machi3-1 allele was introgressed from the Malus floribunda 821 clone into different apple cultivars including the ‘Freedom’. Our data suggest that MYB-binding site containing repeats of the 5B-Machi3-1 promoter is responsible for the strong nectar- and stigma exudate-specific expression. As we found that in vitro, the Machi3-1 protein impairs growth and biofilm formation of Erwinia at physiological concentration, we propose that the Machi3-1 protein could partially protect 5B-Machi3-1 allele containing cultivars against Erwinia by inhibiting the multiplication and biofilm formation of the pathogen in the stigma exudate and in the nectar.


Trees ◽  
2012 ◽  
Vol 27 (3) ◽  
pp. 597-605 ◽  
Author(s):  
Magdolna Tóth ◽  
Gitta Ficzek ◽  
Ildikó Király ◽  
Krisztina Honty ◽  
Mária Hevesi

2011 ◽  
Vol 39 (1) ◽  
pp. 226 ◽  
Author(s):  
Yasemin EVRENOSOĞLU ◽  
Adalet MISIRLI ◽  
Hikmet SAYGILI ◽  
Emre BİLEN ◽  
Özlem BOZTEPE ◽  
...  

Fire blight disease caused by pathogenic bacterium Erwinia amylovora, is the serious disease of pear, and there is not a certain chemical management against this disease except antibiotic-type compounds such as streptomycin. It is very important to improve new fire blight resistant cultivars in case of integrated disease management. With this purpose, different crosses have been made between Pyrus communis varieties that have good fruit characteristics and resistant cultigens. Besides, self and open pollination treatments have been carried out in maternal plants. The disease resistance level of the hybrids obtained from these combinations was determined by artificial inoculations by Erwinia amylovora in greenhouse conditions. A total of 3284 hybrids were inoculated, and 2631 of them survived and were distributed to different susceptibility classes. 19.88% of the inoculated hybrids was killed by Erwinia amylovora. Total distribution of the hybrids to susceptibility classes was as 6.18% in class “A- slightly susceptible”, 3.11% in class “B- less susceptible”, 8.89% in class “C- mid-susceptible”, 20.28% in class “D- susceptible”, and 61.54% in class “E- very susceptible”. Majority of class “A- slightly susceptible” hybrids were obtained from ‘Magness’ x ‘Ankara’ combination. ‘Kieffer’ x ‘Santa Maria’, ‘Kieffer’ open pollination, ‘Magness’ x ‘Akça’, ‘Magness’ x ‘Kieffer’, ‘Magness’ x ‘Santa Maria’, ‘Mustafa Bey’ x ‘Moonglow’ treatments displayed good results with respect to “A- slightly susceptible” character. It is very important to evaluate these hybrid pear populations through different fruit and tree characteristics in the future.


Catalysts ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 673 ◽  
Author(s):  
Burghardt ◽  
Baas ◽  
Gerlach ◽  
Czermak

Fructo-oligosaccharides (FOS) are prebiotic low-calorie sweeteners that are synthesized by the transfer of fructose units from sucrose by enzymes known as fructosyltransferases. If these enzymes generate β-(2,6) glycosidic bonds, the resulting oligosaccharides belong to the neoseries (neoFOS). Here, we characterized the properties of three different fructosyltransferases using a design of experiments approach based on response surface methodology with a D-optimal design. The reaction time, pH, temperature, and substrate concentration were used as parameters to predict three responses: The total enzyme activity, the concentration of neoFOS and the neoFOS yield relative to the initial concentration of sucrose. We also conducted immobilization studies to establish a cascade reaction for neoFOS production with two different fructosyltransferases, achieving a total FOS yield of 47.02 ± 3.02%. The resulting FOS mixture included 53.07 ± 1.66 mM neonystose (neo-GF3) and 20.8 ± 1.91 mM neo-GF4.


1977 ◽  
Vol 164 (2) ◽  
pp. 357-361 ◽  
Author(s):  
K R F Elliott ◽  
C I Pogson

1. Approx. 85% of liver phosphoenolpyruvate carboxykinase is associated with the mitochondrial fraction in the fed guinea pig. Enzyme activity is unchanged in diabetes, but doubles during starvation. In contrast with earlier reports, both cytoplasmic and mitochondrial activities were found to be increased. 2. In kidney cortex, total enzyme activity is increased in both starved and diabetic animals. These changes are associated with increases in the cytoplasmic activity alone. 3. In diabetic animals the mean blood-glucose concentration was 23.1 mM. Other blood metabolites were lower than those in the rat, and the animals did not show significant ketosis. 4. Changes in the rates of gluconeogenesis from lactate and propionate paralleled those in phosphoenolpyruvate carboxykinase activity.


2018 ◽  
Vol 117 ◽  
pp. 7-15 ◽  
Author(s):  
Smail Ait Bahadou ◽  
Abderrahmane Ouijja ◽  
Abdelkarim Karfach ◽  
Abdessalem Tahiri ◽  
Rachid Lahlali

1986 ◽  
Vol 32 (3) ◽  
pp. 496-500 ◽  
Author(s):  
A E Niblock ◽  
G Jablonsky ◽  
F Y Leung ◽  
A R Henderson

Abstract We used an RIA and inhibition of enzyme activity to monitor the changes in mass and catalytic concentrations of the aspartate aminotransferase (EC 2.6.1.1;AST) isoenzymes in serum after myocardial infarction. Cytosolic (c-AST) and mitochondrial (m-AST) forms of AST were present in sera from all 38 of our patients. Although the immunological and catalytic concentrations of both isoenzymes correlated well with the size of the infarct, c-AST gave a better measure than did m-AST. About 20% of the total enzyme activity at peak activity was from the mitochondrial isoenzyme. Both isoenzyme activities peak at very nearly the same time, but m-AST has the longer half-life. Immunological evidence of the mitochondrial isoenzyme can be detected in serum for at least eight days after the infarct. The presence of left ventricular failure produces greater serum isoenzyme activities than in those without failure.


Sign in / Sign up

Export Citation Format

Share Document