scholarly journals Peanut Breeding for Drought Resistance1

1992 ◽  
Vol 19 (1) ◽  
pp. 44-46 ◽  
Author(s):  
W. D. Branch ◽  
C. K. Kvien

Abstract Because drought continues to be a major limiting environmental factor in peanut (Arachis hypogaea L.) production, a breeding strategy for developing drought resistance was initiated in the early 1980's at the University of Georgia, Coastal Plain Experiment Station. Crosses were made between advanced breeding lines and drought resistant germplasm. Rainout shelters were used between 60 and 120 days after planting to provide mid-season drought stress so that pedigree selection could be made within early-segregating generations. Eight pure-line selections from the GA T-2465 × Tifton-8 cross combination were first evaluation in irrigated yield trials. The Georgia selection, GA 901412 now GA T-2842, had the highest pod yield in two irrigated test during 1989 and 1990, and was found to have a 25% yield advantage over Florunner under severe drought stress during 1990. In 1991, this same drought resistant selection again had the top yield over 16 other Virginia/runner type cultivars in each dryland test at two Georgia locations. Thus, progress has been made in developing adapted drought resistant Georgia breeding lines, and such a breeding approach merits consideration for developing future drought resistant candivars.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Samantha J. Monohon ◽  
Daniel K. Manter ◽  
Jorge M. Vivanco

AbstractRhizobacterial communities can contribute to plant trait expression and performance, including plant tolerance against abiotic stresses such as drought. The conditioning of microbial communities related to disease resistance over generations has been shown to develop suppressive soils which aid in plant defense responses. Here, we applied this concept for the development of drought resistant soils. We hypothesized that soils conditioned under severe drought stress and tomato cultivation over two generations, will allow for plant selection of rhizobacterial communities that provide plants with improved drought resistant traits. Surprisingly, the plants treated with a drought-conditioned microbial inoculant showed significantly decreased plant biomass in two generations of growth. Microbial community composition was significantly different between the inoculated and control soils within each generation (i.e., microbial history effect) and for the inoculated soils between generations (i.e., conditioning effect). These findings indicate a substantial effect of conditioning soils on the abiotic stress response and microbial recruitment of tomato plants undergoing drought stress.


2004 ◽  
Vol 14 (4) ◽  
pp. 487-490 ◽  
Author(s):  
Laurie E. Trenholm ◽  
Lawrence E. Datnoff ◽  
Russell T. Nagata

The objectives of these studies were to evaluate the effects of silicon on drought and shade tolerance of st. augustinegrass (Stenotaphrum secundatum). Studies were conducted during 2001 in a glasshouse at the University of Florida Turfgrass Research Envirotron in Gainesville. For both drought and shade evaluations, calcium silicate slag (CaSiO3) was pre-incorporated into pots with commercial potting soil at the rate of 3.36 kg·ha-1 (0.069 lb/1000 ft2). `FX-10' and `FHSA-115' st. augustinegrass were planted into 15.2-cm-diameter × 30.5-cm-deep (6 × 12 inches) plastic pots for the drought study and subjected to minimal irrigation. Under severe drought stress, silicon-amended plants had better responses than non-amended plants. Little improvement was seen under moderate drought stress. `Floratam' and genotype 1997-6 were placed under full sunlight or 50% to 70% shade. There was no benefit from use of silicon under shaded conditions. These findings suggest that silicon might provide improved tolerance to st. augustinegrass under severe drought stress.


2020 ◽  
Author(s):  
Benfu Wang ◽  
Xiaolong Yang ◽  
Jianping Cheng ◽  
Liang Chen ◽  
Yuanyuan Jiang ◽  
...  

Abstract Drought stress is one of major threats to rice production. The weakening of leaf photosynthesis due to drought is the main reason for the reduction of grain yield, but its mechanism is still obscure. The objectives of this study were to reveal the physiological mechanism of drought stress affecting photosynthetic capacity and grain yield. Pot experiments were conducted with three rice cultivars, Hanyou113 (HY113), Huanghuazhan (HHZ) and Zhonghan3 (ZH3) under four water management treatments (traditional flooding (CK), mild drought stress (LD), moderate drought stress (MD) and severe drought stress (HD)) in 2013 and 2014. Compared with CK, grain yield was significantly reduced by 14.9%, 30.8% and 12.8% in HY113, HHZ and ZH3 under mild drought stress, 32.9%, 33.7% and 22.9% in HY113, HHZ and ZH3 under moderate drought stress and 53.6%, 45.6% and 30.7% in HY113, HHZ and ZH3 under severe drought stress, respectively. The photosynthetic rate (Pn) decreased by 49.0% from 20.0 to 10.2 µmol m-2 s-1 in HY113, and 67.6% from 23.4 to 7.58 µmol m-2 s-1 in HHZ, and 39.3% from 23.4 to 14.2 in ZH3. The Pn of HHZ was similar to that of ZH3 under CK conditions. The yield reduction of drought-resistant cultivars was smaller than that of conventional cultivars. Maintaining leaf water potentia (LWP), Pn, photosystem II (PSII) original light energy conversion efficiency, non–photochemical quenching coefficient (NPQ), and increasing in the ratio of photochemical reaction energy in fluorescence and antioxidant enzyme activity, is the physiological basis to achieve a relatively high photosynthesis. These traits could be the target for breeder to developing drought-tolerant varieties.


2006 ◽  
Vol 41 (3) ◽  
pp. 198-201 ◽  
Author(s):  
William D. Branch ◽  
James W. Todd

Field screening for potato leafhopper, Empoasca fabae Harris, resistance among peanut, Arachis hypogaea L., genotypes were conducted for three consecutive years (2001, 2002, and 2003) at the University of Georgia, Coastal Plain Experiment Station in Tifton, GA. Irrigated field trials were used for evaluations, and plants were grown without any pesticides other than preplant and occasional postemergence herbicides. Results from these replicated tests showed a wide-range of leafhopper damage. During each of the 3 yrs, ‘Georgia-01R’ consistently had the lowest leafhopper damage rating of all genotypes tested. Likewise, each year ‘Georgia Hi-O/L’ had the highest leafhopper damage rating. ‘Georgia Green’ and other cultivars and breeding lines were intermediate between Georgia-01R and Georgia Hi-O/L for leafhopper ratings. These field trials confirmed the multiple-pest resistant runner-type cultivar Georgia-01R as a new source of leafhopper resistance in peanut.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 332
Author(s):  
Min Li ◽  
Haoyun Wang ◽  
Xizhou Zhao ◽  
Zhongke Lu ◽  
Xueguang Sun ◽  
...  

Masson pine is an important afforestation species in southern China, where seasonal drought is common. The present study focused on the effects of Suillus placidus, an ectomycorrhizal fungus, inoculation on the growth and physiological and biochemical performance of masson pine seedlings under four different watering treatments (well-watered, mild drought, moderate drought, and severe drought) to evaluate the symbiotic relationship between S. placidus and masson pine seedlings. Ectomycorrhizal-inoculated (ECM) and non-inoculated (NM) seedlings were grown in pots and maintained for 60 days using the weighing method. Results showed that seedlings’ growth, dry weight, RWC, chlorophyll content, PSII efficiency, and photosynthesis decreased as drought stress intensified in both ECM and NM plants. This suggests that drought stress significantly limits the growth and photosynthetic performance of masson pine seedlings. Nevertheless, increased An/gs and proline contents in both NM and ECM prevented oxidative damage caused by drought stress. In addition, increased peroxidase (POD) activity is an essential defense mechanism of ECM seedling under drought stress. Compared with NM, ECM seedlings showed faster growth, higher RWC, and photosynthetic performance, and lower lipid peroxidation in cell membranes under drought stress, as indicated by higher POD activity and lower proline and malondialdehyde (MDA). Our experiment found that S. placidus inoculation can enhance the drought resistance of masson pine seedlings by increasing antioxidant enzyme activity, water use efficiency, and proline content, thereby enhancing growth under water-deficiency conditions. S. placidus can be used to cultivate high-quality seedlings and improve their survival in regions that experience seasonal droughts.


Sign in / Sign up

Export Citation Format

Share Document