scholarly journals Resistance to Rust and Late Leafspot Diseases in Some Genotypes of Arachis hypogaea1

1982 ◽  
Vol 9 (1) ◽  
pp. 6-10 ◽  
Author(s):  
P. Subrahmanyam ◽  
D. McDonald ◽  
R. W. Gibbons ◽  
S. N. Nigam ◽  
D. J. Nevill

Abstract Resistance to rust (Puccinia arachidis Speg.) and late leafspot (Cercosporidium personatum (Berk. & Curt.) Deighton) in some peanut genotypes was studied under field conditions. Late leafspot development was also assessed in the glasshouse and the parameters lesion diameter, defoliation percentage and sporulation gave highly significant correlations with the field disease scores. Several genotypes were found to be resistant to both rust and late leafspot and should be useful sources of multiple disease-resistance in a breeding program.

2008 ◽  
Vol 117 (4) ◽  
pp. 531-543 ◽  
Author(s):  
Young-Ki Jo ◽  
Reed Barker ◽  
William Pfender ◽  
Scott Warnke ◽  
Sung-Chur Sim ◽  
...  

Crop Science ◽  
2010 ◽  
Vol 50 (2) ◽  
pp. 458-466 ◽  
Author(s):  
Peter J. Balint-Kurti ◽  
Junyun Yang ◽  
George Van Esbroeck ◽  
Janelle Jung ◽  
Margaret E. Smith

2021 ◽  
Author(s):  
Dinesh Kumar Saini ◽  
Amneek Chahal ◽  
Neeraj Pal ◽  
Puja Srivast ◽  
Pushpendra Kumar Gupta

Abstract In wheat, meta-QTLs (MQTLs), and candidate genes (CGs) were identified for multiple disease resistance (MDR). For this purpose, information was collected from 58 studies for mapping QTLs for resistance to one or more of the five diseases. As many as 493 QTLs were available from these studies, which were distributed in five diseases as follows: septoria tritici blotch (STB) 126 QTLs; septoria nodorum blotch (SNB), 103; fusarium head blight (FHB), 184; karnal bunt (KB), 66, and loose smut (LS), 14. Of these 493 QTLs, only 291 QTLs could be projected onto a consensus genetic map, giving 63 MQTLs. The CI of the MQTLs ranged from 0.04 to 15.31 cM with an average of 3.09 cM per MQTL. This is a ~ 4.39 fold reduction from the CI of initial QTLs, which ranged from 0 to 197.6 cM, with a mean of 13.57 cM. Of 63 MQTLs, 60 were anchored to the reference physical map of wheat (the physical interval of these MQTLs ranged from 0.30 to 726.01 Mb with an average of 74.09 Mb). Thirty-eight (38) of these MQTLs were verified using marker-trait associations (MTAs) derived from genome-wide association studies. As many as 874 CGs were also identified which were further investigated for differential expression using data from five transcriptome studies, resulting in 194 differentially expressed genes (DEGs). Among the DEGs, 85 genes had functions previously reported to be associated with disease resistance. These results should prove useful for fine mapping of MDR genes and marker-assisted breeding.


2021 ◽  
pp. 178-193
Author(s):  
Svetla Sofkova-Bobcheva ◽  
Ivelin Pantchev ◽  
Ivan Kiryakov ◽  
Petar Chavdarov ◽  
Yordan Muhovski ◽  
...  

Abstract Although historically a surplus food producer, Bulgarian agriculture has faced a downturn in recent decades. Local legume cultivars have lost favour with farmers and the canning industry, due to their low productivity in comparison with imported ones. Diseases and abiotic stresses are the most important factors limiting the production of edible legumes, costing farmers hundreds of euros in lost revenue each year. The overall objective of our ongoing bean mutation breeding programme was to enrich the gene pool of Phaseolus vulgaris L. and to develop genotypes resistant to Xanthomonas axonopodis pv. phaseoli (Smith) (Xap) and Pseudomonas savastanoi pv. phaseolicola (Burkh.) (Psp) using EMS. An elite line and common cultivar (an heirloom and a snap bean type) in Bulgaria, were selected as parents and the chemical mutagen EMS was used for generating mutations. In total, 1000 seeds were treated and the two generated M1 populations were grown in the field. All M2 mutant plants (1650 from initial line IP564 and 2420 from initial cultivar 'Mastilen 11b') were grown in field conditions and a number of phenotypic changes were observed on these mutated plants. They were also screened for Xap disease resistance via leaf artificial inoculation under greenhouse conditions. Individual plant selection was performed for the putatively resistant M2 plants. In the M3 generation these lines were screened using artificial inoculation with Xap and Psp pathogens (leaves and pods) under field conditions. Selected M3-M4 lines with confirmed disease resistance were tested for fresh pod quality. Yield tests were started in M4 and M5 generations and, according to their productivity performance, mutants were advanced to the M6/M7 generation for validation. The expression patterns of genes putatively involved in the resistance reactions towards two races of Psp were determined using qRT-PCR for the specific and reference genes. In conclusion, 50 plants with visible morphological changes and/or increased tolerance to the two targeted bacterial diseases were selected. A total of 20 advanced mutant bean lines are currently being evaluated for their competitiveness in multiple sites.


2012 ◽  
Vol 6 (4) ◽  
pp. 182-194 ◽  
Author(s):  
D. Nyadanu ◽  
R. Akromah ◽  
B. Adomako ◽  
H. Dzahini-Ob ◽  
A.Y. Akrofi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document