scholarly journals Determination of Bacterial Flora of Honey Bee (Apis mellifera), cry Gene Analysis of Bacteria and A Study on Protection of Honey Bee Health

Author(s):  
Mehtap USTA
2019 ◽  
Vol 56 (4) ◽  
pp. 636-641 ◽  
Author(s):  
Roman V. Koziy ◽  
Sarah C. Wood ◽  
Ivanna V. Kozii ◽  
Claire Janse van Rensburg ◽  
Igor Moshynskyy ◽  
...  

Deformed wing virus (DWV) is a single-stranded RNA virus of honey bees ( Apis mellifera L.) transmitted by the parasitic mite Varroa destructor. Although DWV represents a major threat to honey bee health worldwide, the pathological basis of DWV infection is not well documented. The objective of this study was to investigate clinicopathological and histological aspects of natural DWV infection in honey bee workers. Emergence of worker honey bees was observed in 5 colonies that were clinically affected with DWV and the newly emerged bees were collected for histopathology. DWV-affected bees were 2 times slower to emerge and had 30% higher mortality compared to clinically normal bees. Hypopharyngeal glands in bees with DWV were hypoplastic, with fewer intracytoplasmic secretory vesicles; cells affected by apoptosis were observed more frequently. Mandibular glands were hypoplastic and were lined by cuboidal epithelium in severely affected bees compared to tall columnar epithelium in nonaffected bees. The DWV load was on average 1.7 × 106 times higher ( P < .001) in the severely affected workers compared to aged-matched sister honey bee workers that were not affected by deformed wing disease based on gross examination. Thus, DWV infection is associated with prolonged emergence, increased mortality during emergence, and hypoplasia of hypopharyngeal and mandibular glands in newly emerged worker honey bees in addition to previously reported deformed wing abnormalities.


2018 ◽  
Author(s):  
Tim Regan ◽  
Mark W. Barnett ◽  
Dominik R. Laetsch ◽  
Stephen J. Bush ◽  
David Wragg ◽  
...  

AbstractThe European honey bee (Apis mellifera) plays a major role in pollination and food production, but is under threat from emerging pathogens and agro-environmental insults. As with other organisms, honey bee health is a complex product of environment, host genetics and associated microbes (commensal, opportunistic and pathogenic). Improved understanding of bee genetics and their molecular ecology can help manage modern challenges to bee health and production. Sampling bee and cobiont genomes, we characterised the metagenome of 19 honey bee colonies across Britain. Low heterozygosity was observed in bees from many Scottish colonies, sharing high similarity to the native dark bee, A. mellifera mellifera. Apiaries exhibited high diversity in the composition and relative abundance of individual microbiome taxa. Most non-bee sequences derived from known honey bee commensal bacteria or known pathogens, e.g. Lotmaria passim (Trypanosomatidae), and Nosema spp. (Microsporidia). However, DNA was also detected from numerous additional bacterial, plant (food source), protozoan and metazoan organisms. To classify sequences from cobionts lacking genomic information, we developed a novel network analysis approach clustering orphan contigs, allowing the identification of a pathogenic gregarine. Our analyses demonstrate the power of high-throughput, directed metagenomics in agroecosystems identifying potential threats to honey bees present in their microbiota.


Author(s):  
Marla Spivak ◽  
Robert G. Danka

AbstractHygienic behavior in honey bees, Apis mellifera, has been studied for over 80 years with the aim of understanding mechanisms of pathogen and parasite resistance and colony health. This review emphasizes the underlying behavioral mechanisms of hygienic behavior in honey bees and when known, in other social insects. We explore the relationship between honey bee hygienic behavior toward diseased brood and Varroa-parasitized brood (Varroa-sensitive hygiene, VSH); the timing of hygienic removal of diseased, Varroa-infested, and virus-infected brood relative to risk of transmission that can affect colony fitness; and the methods, utility, and odorants associated with different assays used to select colonies for resistance to diseases and Varroa. We also provide avenues for future research that would benefit honey bee health and survivorship.


Bee World ◽  
2020 ◽  
pp. 1-5
Author(s):  
Humberto Boncristiani ◽  
James D. Ellis ◽  
Tomas Bustamante ◽  
Jason Graham ◽  
Cameron Jack ◽  
...  

2021 ◽  
Vol 9 (4) ◽  
pp. 845
Author(s):  
Loreley Castelli ◽  
Sofía Balbuena ◽  
Belén Branchiccela ◽  
Pablo Zunino ◽  
Joanito Liberti ◽  
...  

Glyphosate is the most used pesticide around the world. Although different studies have evidenced its negative effect on honey bees, including detrimental impacts on behavior, cognitive, sensory and developmental abilities, its use continues to grow. Recent studies have shown that it also alters the composition of the honey bee gut microbiota. In this study we explored the impact of chronic exposure to sublethal doses of glyphosate on the honey bee gut microbiota and its effects on the immune response, infection by Nosema ceranae and Deformed wing virus (DWV) and honey bee survival. Glyphosate combined with N. ceranae infection altered the structure and composition of the honey bee gut microbiota, for example by decreasing the relative abundance of the core members Snodgrassella alvi and Lactobacillus apis. Glyphosate increased the expression of some immune genes, possibly representing a physiological response to mitigate its negative effects. However, this response was not sufficient to maintain honey bee health, as glyphosate promoted the replication of DWV and decreased the expression of vitellogenin, which were accompanied by a reduced life span. Infection by N. ceranae also alters honey bee immunity although no synergistic effect with glyphosate was observed. These results corroborate previous findings suggesting deleterious effects of widespread use of glyphosate on honey bee health, and they contribute to elucidate the physiological mechanisms underlying a global decline of pollination services.


2021 ◽  
Vol 36 (5) ◽  
pp. 1585-1585
Author(s):  
Mariia Fedoriak ◽  
Oleksandr Kulmanov ◽  
Alina Zhuk ◽  
Oleksandr Shkrobanets ◽  
Kateryna Tymchuk ◽  
...  

Insects ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Shilpi Bhatia ◽  
Saman S. Baral ◽  
Carlos Vega Melendez ◽  
Esmaeil Amiri ◽  
Olav Rueppell

Among numerous viruses that infect honey bees (Apis mellifera), Israeli acute paralysis virus (IAPV) can be linked to severe honey bee health problems. Breeding for virus resistance may improve honey bee health. To evaluate the potential for this approach, we compared the survival of IAPV infection among stocks from the U.S. We complemented the survival analysis with a survey of existing viruses in these stocks and assessing constitutive and induced expression of immune genes. Worker offspring from selected queens in a common apiary were inoculated with IAPV by topical applications after emergence to assess subsequent survival. Differences among stocks were small compared to variation within stocks, indicating the potential for improving honey bee survival of virus infections in all stocks. A positive relation between worker survival and virus load among stocks further suggested that honey bees may be able to adapt to better cope with viruses, while our molecular studies indicate that toll-6 may be related to survival differences among virus-infected worker bees. Together, these findings highlight the importance of viruses in queen breeding operations and provide a promising starting point for the quest to improve honey bee health by selectively breeding stock to be better able to survive virus infections.


2015 ◽  
Vol 59 (2) ◽  
pp. 127-133 ◽  
Author(s):  
Krystyna Czekońska ◽  
Bożena Chuda-Mickiewicz

Abstract The effectiveness of two methods of collecting semen from honeybee Apis mellifera drones was compared, and the reasons for problems with ejaculating semen were analysed. Among 275 drones, 100 were stimulated to release semen using a manual method, 100 with the use of chloroform, and from 75 drones the reproductive organs were dissected for analysis and evaluation. It was found that the principal causes of problems that drones had with ejaculating their semen were anatomical changes or a delay in the development of the mucus glands. It was also found that the method employing chloroform was less efficient in the first phase of eversion of the endophallus, compared with the manual method. The method with the use of chloroform allows the determination of the proportion of drones, which do not evert the endophallus because of poor or delayed development of mucus glands, as well as the proportion of drones which evert the organ, but do not ejaculate semen because of the absence of semen in the seminal vesicles.


Apidologie ◽  
2016 ◽  
Vol 47 (3) ◽  
pp. 273-275 ◽  
Author(s):  
Marina D. Meixner ◽  
Yves Le Conte

Sign in / Sign up

Export Citation Format

Share Document