scholarly journals CFD MODELING OF VORTEX AFTERBURNING OF BIOMASS GASIFICATION PRODUCTS IN A FLUIDIZED BED FURNACE

2021 ◽  
Vol 43 (4) ◽  
pp. 83-91
Author(s):  
S Kobzar ◽  
I Borisov ◽  
A. Khalatov ◽  
A. Teplitski ◽  
Y. Pitsukha

CFD modeling of the afterburning of biomass gasification products in a fluidized bed furnace with a vortex supply of secondary air has been carried out. The effect of secondary air heating on the ecological characteristics of flue gases has been determined. Modeling has shown that gasification products swirl in the primary chamber with the formation of a central vortex, which obeys the law of solid-body rotation. An increase in the temperature of the secondary air leads to an increase in its tangential velocity and, as a consequence, to an increase in centrifugal mass forces. Calculations have shown that with an increase in the secondary air temperature, the maximum of the kinetic energy of turbulence shifts to the periphery and increases in absolute value. This results in more efficient mixing of the central (producer gas) and peripheral (secondary air) streams. As a result, this leads to a more complete combustion. The influence of secondary air heating on the ecological characteristics of the furnace has been determined. As a result of air heating from 30° C to 300° C, the concentration of carbon monoxide decreases by more than 1.5 times. The concentration of nitrogen oxides practically does not change and amounts to 3.5 mg /nm3.

J ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 266-287
Author(s):  
Zheng Lian ◽  
Yixiao Wang ◽  
Xiyue Zhang ◽  
Abubakar Yusuf ◽  
Lord Famiyeh ◽  
...  

The current hydrogen generation technologies, especially biomass gasification using fluidized bed reactors (FBRs), were rigorously reviewed. There are involute operational parameters in a fluidized bed gasifier that determine the anticipated outcomes for hydrogen production purposes. However, limited reviews are present that link these parametric conditions with the corresponding performances based on experimental data collection. Using the constructed artificial neural networks (ANNs) as the supervised machine learning algorithm for data training, the operational parameters from 52 literature reports were utilized to perform both the qualitative and quantitative assessments of the performance, such as the hydrogen yield (HY), hydrogen content (HC) and carbon conversion efficiency (CCE). Seven types of operational parameters, including the steam-to-biomass ratio (SBR), equivalent ratio (ER), temperature, particle size of the feedstock, residence time, lower heating value (LHV) and carbon content (CC), were closely investigated. Six binary parameters have been identified to be statistically significant to the performance parameters (hydrogen yield (HY)), hydrogen content (HC) and carbon conversion efficiency (CCE)) by analysis of variance (ANOVA). The optimal operational conditions derived from the machine leaning were recommended according to the needs of the outcomes. This review may provide helpful insights for researchers to comprehensively consider the operational conditions in order to achieve high hydrogen production using fluidized bed reactors during biomass gasification.


2021 ◽  
Vol 235 ◽  
pp. 113981
Author(s):  
M. Puig-Gamero ◽  
D.T. Pio ◽  
L.A.C. Tarelho ◽  
P. Sánchez ◽  
L. Sanchez-Silva

2016 ◽  
Vol 152 ◽  
pp. 116-123 ◽  
Author(s):  
L.F. de Diego ◽  
F. García-Labiano ◽  
P. Gayán ◽  
A. Abad ◽  
T. Mendiara ◽  
...  

RSC Advances ◽  
2016 ◽  
Vol 6 (43) ◽  
pp. 36642-36655 ◽  
Author(s):  
Rong Zhang ◽  
Zhenhua Hao ◽  
Zhiyu Wang ◽  
Xiaodong Huo ◽  
Junguo Li ◽  
...  

This paper investigated the distribution of secondary air after injection into a multi-stage conversion fluidized bed (MFB) cold model.


2021 ◽  
pp. 131847
Author(s):  
Dali Kong ◽  
Kun Luo ◽  
Shuai Wang ◽  
Jiahui Yu ◽  
Jianren Fan

Sign in / Sign up

Export Citation Format

Share Document