scholarly journals Synthesis, quantum-chemical calculations and virtual screening of the alkaloid cytisine derivatives

2021 ◽  
Vol 104 (4) ◽  
pp. 21-29
Author(s):  
Zh.S. Nurmaganbetov ◽  
◽  
G.K. Mukusheva ◽  
Ye.V. Minayeva ◽  
D.M. Turdybekov ◽  
...  

The synthesis of some cytisine derivatives was carried out in the work. The article provides the data of quantum-chemical calculation and virtual screening of the alkaloid cytisine derivatives synthesized. At the same time, the reaction centers of the cytisine derivatives molecules were determined. In order to study the reactivity of the derivatives obtained (namely cinnamoylcytisine, lipoylcytisine, and cytisinylisoalantholactone) the quantum-chemical calculations were conducted to determine the energy and charge characteristics of the molecules. The results indicate a sufficient thermodynamic stability of the cinnamoylcytisine and lipoylcytisine molecules. The cytisinylisoalantholactone molecule is not stable according to the results of quantum chemical calculations. The data on the energy values of the frontier molecular orbitals show that, in general, all molecules exhibit electrophilic properties. A bioprediction was implemented using PASS (Prediction of Activity Spectra for Substances) as one of the most efficient and well-known computer program with the aim of detailed study and the probable establishment of the biological activity of the synthesized cytisine derivatives. Based on the results of virtual screening, promising types of alkaloid cytisine derivatives were identified, which are potential sources of original drugs

2020 ◽  
Vol 16 (2) ◽  
pp. 93-103 ◽  
Author(s):  
Piotr Kawczak ◽  
Leszek Bober ◽  
Tomasz Bączek

Background: Pharmacological and physicochemical classification of bases’ selected analogues of nucleic acids is proposed in the study. Objective: Structural parameters received by the PCM (Polarizable Continuum Model) with several types of calculation methods for the structures in vacuo and in the aquatic environment together with the huge set of extra molecular descriptors obtained by the professional software and literature values of biological activity were used to search the relationships. Methods: Principal Component Analysis (PCA) together with Factor Analysis (FA) and Multiple Linear Regressions (MLR) as the types of the chemometric approach based on semi-empirical ab initio molecular modeling studies were performed. Results: The equations with statistically significant descriptors were proposed to demonstrate both the common and differentiating characteristics of the bases' analogues of nucleic acids based on the quantum chemical calculations and biological activity data. Conclusion: The obtained QSAR models can be used for predicting and explaining the activity of studied molecules.


2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from <i>ab initio</i> geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</p>


2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<div>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from ab initio geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</div>


2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from <i>ab initio</i> geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</p>


2020 ◽  
Vol 11 (29) ◽  
pp. 7569-7577
Author(s):  
Tsuyoshi Mita ◽  
Yu Harabuchi ◽  
Satoshi Maeda

QCaRA successfully predicted a new synthetic path based on the reaction path network produced by quantum chemical calculation.


2019 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<div>This article presents theoretical data on geometric and</div><div>energetic features of halobenzenes and xylenes. Data were obtained from ab initio geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure</div><div>of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</div>


2020 ◽  
Author(s):  
Sopanant Datta ◽  
Taweetham Limpanuparb

<p>This article presents theoretical data on geometric and energetic features of halobenzenes and xylenes. Data were obtained from <i>ab initio</i> geometry optimization and frequency calculations at HF, B3LYP, MP2 and CCSD levels of theory on 6-311++G(d,p) basis set. In total, 1504 structures of halobenzenes, three structures of xylenes and one structure of benzene were generated and processed by custom-made codes in Mathematica. The quantum chemical calculation was completed in Q-Chem software package. Geometric and energetic data of the compounds are presented in this paper as supplementary tables. Raw output files as well as codes and scripts associated with production and extraction of data are also provided.</p>


Sign in / Sign up

Export Citation Format

Share Document