scholarly journals Ecological vulnerability assessment for a transboundary basin in Central Asia and its spatiotemporal characteristics analysis: Taking Amu Darya River Basin as an example

2019 ◽  
Vol 34 (12) ◽  
pp. 2643
Author(s):  
CHEN Tao ◽  
BAO An-ming ◽  
GUO Hao ◽  
ZHENG Guo-xiong ◽  
YUAN Ye ◽  
...  
Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3385
Author(s):  
Ye Lyu ◽  
Yue Huang ◽  
Anming Bao ◽  
Ruisen Zhong ◽  
Han Yang

In this study, the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin in Central Asia were selected as typical study areas. Temporal/spatial changes from 2002 to 2016 in the terrestrial water storage (TWS) and the groundwater storage (GWS) were analyzed, based on RL06 Mascon data from the Gravity Recovery and Climate Experiment (GRACE) satellite, and the sum of soil water content, snow water equivalent and canopy water data that were obtained from Global Land Data Assimilation System (GLDAS). Combing meteorological data and land use and cover change (LUCC) data, the joint impact of both human activities and climate change on the terrestrial water storage change (TWSC) and the groundwater storage change (GWSC) was evaluated by statistical analysis. The results revealed three findings: (1) The TWS retrieved by CSR (Center for Space Research) and the JPL (Jet Propulsion Laboratory) showed a decreasing trend in the three basins, and the variation of TWS showed a maximum surplus in spring (March–May) and a maximum deficit in autumn (September–November). (2) The decreasing rates of groundwater storage that were extracted, based on JPL and CSR Mascon data sets, were −2.17 mm/year and −3.90 mm/year, −3.72 mm/year and −4.96 mm/year, −1.74 mm/year and −3.36 mm/year in the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin, respectively. (3) In the Amu Darya river basin, annual precipitation showed a decreasing trend, while the evapotranspiration rate showed an increasing trend due to an increasing temperature, and the TWS decreased from 2002 to 2016 in most areas of the basin. However, in the middle reaches of the Amu Darya river basin, the TWS increased due to the increase in cultivated land area, water income from flooded irrigation, and reservoir impoundment. In the upper reaches of the Syr Darya river basin, the increase in precipitation in alpine areas leads to an increase in glacier and snow meltwater, which is the reason for the increase in the TWS. In the middle and lower reaches of the Syr Darya river basin, the amount of evapotranspiration dissipation exceeds the amount of water replenished by agricultural irrigation, which leads to a decrease in TWS and GWS. The increase in precipitation in the northwest of the Balkhash lake basin, the increase in farmland irrigation water, and the topography (higher in the southeast and lower in the northwest) led to an increase in TWS and GWS in the northwest of the Balkhash lake basin. This study can provide useful information for water resources management in the inland river basins of Central Asia.


2009 ◽  
Vol 59 (6) ◽  
pp. 1183-1193 ◽  
Author(s):  
Shavkat Rakhmatullaev ◽  
Frédéric Huneau ◽  
Jusipbek Kazbekov ◽  
Philippe Le Coustumer ◽  
Jamoljon Jumanov ◽  
...  

2020 ◽  
Vol 36 (2) ◽  
pp. 235-239
Author(s):  
Bakhtiyor Sheraliev ◽  
Sirojiddin Allayarov ◽  
Zuogang Peng

2021 ◽  
Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi bin Ismail ◽  
Shamsuddin Shahid

Abstract Droughts significantly affect socioeconomic and the environment primarily by decreasing the water availability of a region. This study aims to assess the changes in drought characteristics in Central Asia's transboundary Amu Darya river basin for four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The precipitation, maximum and minimum temperature (Pr, Tmx and Tmn) simulations of 19 global climate models (GCMs) of the coupled model intercomparison project phase 6 (CMIP6) were used to select the best models to prepare the multimodel ensemble (MME). The standard precipitation evapotranspiration index (SPEI) was used to estimate droughts for multiple timescales from Pr and potential evapotranspiration (PET) derived from Tmx and Tmn. The changes in the frequency and spatial distribution of droughts for different severities and timescales were evaluated for the two future periods, 2020–2059 and 2060-2099, compared to the base period of 1975-2014. The study revealed four GCMs, AWI-CM-1-1-MR, CMCC-ESM2, INM-CM4-8 and MPI-ESM1-2-LR, as most suitable for projections of droughts in the study area. The multimodel ensemble (MME) mean of the selected GCMs showed a decrease in Pr by -3 to 12% in the near future and a change in the range of 3 to -9% in the far future in most parts of the basin for different SSPs. The PET showed almost no change in most parts of the basin in the near future and an increase in the range of 10 to 70% in the far future. The change (%) in projected drought occurrence showed to noticeably decrease in the near future, particularly for moderate droughts by up to ≤-50% for SSP5-8.5 and an increase in the far future by up to ≥30% for SSP3-7.0. The increase in all severities of droughts was projected mostly in the center and northwest of the basin. Overall, the results showed a drought shift from the east to the northwest of the basin in the future.


Sign in / Sign up

Export Citation Format

Share Document