scholarly journals Projection of Droughts in Amu Darya River Basin for Shared Socioeconomic Pathways

Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi bin Ismail ◽  
Shamsuddin Shahid

Abstract Droughts significantly affect socioeconomic and the environment primarily by decreasing the water availability of a region. This study aims to assess the changes in drought characteristics in Central Asia's transboundary Amu Darya river basin for four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The precipitation, maximum and minimum temperature (Pr, Tmx and Tmn) simulations of 19 global climate models (GCMs) of the coupled model intercomparison project phase 6 (CMIP6) were used to select the best models to prepare the multimodel ensemble (MME). The standard precipitation evapotranspiration index (SPEI) was used to estimate droughts for multiple timescales from Pr and potential evapotranspiration (PET) derived from Tmx and Tmn. The changes in the frequency and spatial distribution of droughts for different severities and timescales were evaluated for the two future periods, 2020–2059 and 2060-2099, compared to the base period of 1975-2014. The study revealed four GCMs, AWI-CM-1-1-MR, CMCC-ESM2, INM-CM4-8 and MPI-ESM1-2-LR, as most suitable for projections of droughts in the study area. The multimodel ensemble (MME) mean of the selected GCMs showed a decrease in Pr by -3 to 12% in the near future and a change in the range of 3 to -9% in the far future in most parts of the basin for different SSPs. The PET showed almost no change in most parts of the basin in the near future and an increase in the range of 10 to 70% in the far future. The change (%) in projected drought occurrence showed to noticeably decrease in the near future, particularly for moderate droughts by up to ≤-50% for SSP5-8.5 and an increase in the far future by up to ≥30% for SSP3-7.0. The increase in all severities of droughts was projected mostly in the center and northwest of the basin. Overall, the results showed a drought shift from the east to the northwest of the basin in the future.

2021 ◽  
Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi Ismail ◽  
Tze Huey Tam ◽  
Shamsuddin Shahid

Abstract Global Climate Models (GCMs) are considered the most feasible tools to estimate future climate change. The objective of this study was to assess the interpretation of 19 GCMs of Coupled Model Intercomparison Project 6 (CMIP6) in replicating the historical precipitation and temperature of climate prediction center data for the Amu Darya river basin (ADRB) and the projection of climate of the basin using the selected GCMs. The Kling Gupta efficiency (KGE) metric was used to assess the effectiveness of GCMs to simulate the annual geographic variability of precipitation, maximum and minimum temperature (Pr, Tmx and Tmn). A multi-criteria decision-making approach (MCDMA) was used to integrate the KGE values to rank GCMs. The results revealed that MPI-ESM1-2-LR, CMCC-ESM2, INM-CM4-8 and AWI-CM-1-1-MR are the best in replicating observed Pr, Tmx and Tmn in ADRB. Projection of climate employing the selected GCMs indicated an increase in precipitation (9.9-12.4%) and temperature (1.3-5.5⁰C) in the basin for all the shared socioeconomic pathways (SSPs), particularly for the far future (2060-2099). A significant variation can be seen in temperature over the different climatic zone. However, the intercomparison of selected GCM projected revealed high uncertainty in the projected climate. The uncertainty is higher in the far future and higher SSPs compared to the near future and lower SSPs.


Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 558 ◽  
Author(s):  
Dario Zhiña ◽  
Martín Montenegro ◽  
Lisseth Montalván ◽  
Daniel Mendoza ◽  
Juan Contreras ◽  
...  

Climate change threatens the hydrological equilibrium with severe consequences for living beings. In that respect, considerable differences in drought features are expected, especially for mountain-Andean regions, which seem to be prone to climate change. Therefore, an urgent need for evaluation of such climate conditions arises; especially the effects at catchment scales, due to its implications over the hydrological services. However, to study future climate impacts at the catchment scale, the use of dynamically downscaled data in developing countries is a luxury due to the computational constraints. This study performed spatiotemporal future long-term projections of droughts in the upper part of the Paute River basin, located in the southern Andes of Ecuador. Using 10 km dynamically downscaled data from four global climate models, the standardized precipitation and evapotranspiration index (SPEI) index was used for drought characterization in the base period (1981–2005) and future period (2011–2070) for RCP 4.5 and RCP 8.5 of CMIP5 project. Fitting a generalized-extreme-value (GEV) distribution, the change ratio of the magnitude, duration, and severity between the future and present was evaluated for return periods 10, 50, and 100 years. The results show that magnitude and duration dramatically decrease in the near future for the climate scenarios under analysis; these features presented a declining effect from the near to the far future. Additionally, the severity shows a general increment with respect to the base period, which is intensified with longer return periods; however, the severity shows a decrement for specific areas in the far future of RCP 4.5 and near future of RCP 8.5. This research adds knowledge to the evaluation of droughts in complex terrain in tropical regions, where the representation of convection is the main limitation of global climate models (GCMs). The results provide useful information for decision-makers supporting mitigating measures in future decades.


2020 ◽  
Vol 12 (9) ◽  
pp. 3684
Author(s):  
Mohamed Salem Nashwan ◽  
Shamsuddin Shahid ◽  
Eun-Sung Chung

The present study projected future climate change for the densely populated Central North region of Egypt (CNE) for two representative concentration pathways (RCPs) and two futures (near future: 2020–2059, and far future: 2060–2099), estimated by a credible subset of five global climate models (GCMs). Different bias correction models have been applied to correct the bias in the five interpolated GCMs’ outputs onto a high-resolution horizontal grid. The 0.05° CNE datasets of maximum and minimum temperatures (Tmx, and Tmn, respectively) and the 0.1° African Rainfall Climatology (ARC2) datasets represented the historical climate. The evaluation of bias correction methodologies revealed the better performance of linear and variance scaling for correcting the rainfall and temperature GCMs’ outputs, respectively. They were used to transfer the correction factor to the projections. The five statistically bias-corrected climate projections presented the uncertainty range in the future change in the climate of CNE. The rainfall is expected to increase in the near future but drastically decrease in the far future. The Tmx and Tmn are projected to increase in both future periods reaching nearly a maximum of 5.50 and 8.50 °C for Tmx and Tmn, respectively. These findings highlighted the severe consequence of climate change on the socio-economic activities in the CNE aiming for better sustainable development.


2017 ◽  
Vol 9 (1) ◽  
pp. 137-155 ◽  
Author(s):  
Hashim Isam Jameel Al-Safi ◽  
P. Ranjan Sarukkalige

Abstract The conceptual rainfall–runoff (HBV model) is applied to evaluate impacts of future climate changes on the hydrological system of the Richmond River catchment, Australia. Daily observed rainfall, temperature and discharge and long-term monthly mean potential evapotranspiration from the hydro-meteorological stations within the catchment over the period 1972–2014 were used to run, calibrate and validate the HBV model before the simulation. Future climate signals were extracted from a multi-model ensemble of eight global climate models (GCMs) of the CMIP5 under three scenarios (RCP2.6, RCP4.5 and RCP8.5). The calibrated HBV model was forced with the downscaled rainfall and temperature to simulate future streamflow at catchment outlet for the near-future (2016–2035), mid (2046–2065) and late (2080–2099) 21st century. A baseline run, with baseline climate period 1971–2010, was used to represent current climate status. Almost all GCMs’ scenarios predict slight increase in annual mean rainfall during the beginning of the century and decrease towards the mid and late century. Modelling results also show positive trends in annual mean streamflow during the near-future (13–23%), and negative trends in the mid (2–6%) and late century (6–16%), under all scenarios compared to the baseline-run. Findings could assist in managing future water resources in the catchment.


2021 ◽  
Author(s):  
Thedini Asali Peiris ◽  
Petra Döll

<p>Unlike global climate models, hydrological models cannot simulate the feedbacks among atmospheric processes, vegetation, water, and energy exchange at the land surface. This severely limits their ability to quantify the impact of climate change and the concurrent increase of atmospheric CO<sub>2</sub> concentrations on evapotranspiration and thus runoff. Hydrological models generally calculate actual evapotranspiration as a fraction of potential evapotranspiration (PET), which is computed as a function of temperature and net radiation and sometimes of humidity and wind speed. Almost no hydrological model takes into account that PET changes because the vegetation responds to changing CO<sub>2</sub> and climate. This active vegetation response consists of three components. With higher CO<sub>2</sub> concentrations, 1) plant stomata close, reducing transpiration (physiological effect) and 2) plants may grow better, with more leaves, increasing transpiration (structural effect), while 3) climatic changes lead to changes in plants growth and even biome shifts, changing evapotranspiration. Global climate models, which include dynamic vegetation models, simulate all these processes, albeit with a high uncertainty, and take into account the feedbacks to the atmosphere.</p><p>Milly and Dunne (2016) (MD) found that in the case of RCP8.5 the change of PET (computed using the Penman-Monteith equation) between 1981- 2000 and 2081-2100 is much higher than the change of non-water-stressed evapotranspiration (NWSET) computed by an ensemble of global climate models. This overestimation is partially due to the neglect of active vegetation response and partially due to the neglected feedbacks between the atmosphere and the land surface.</p><p>The objective of this paper is to present a simple approach for hydrological models that enables them to mimic the effect of active vegetation on potential evapotranspiration under climate change, thus improving computation of freshwater-related climate change hazards by hydrological models. MD proposed an alternative approach to estimate changes in PET for impact studies that is only a function of the changes in energy and not of temperature and achieves a good fit to the ensemble mean change of evapotranspiration computed by the ensemble of global climate models in months and grid cells without water stress. We developed an implementation of the MD idea for hydrological models using the Priestley-Taylor equation (PET-PT) to estimate PET as a function of net radiation and temperature. With PET-PT, an increasing temperature trend leads to strong increases in PET. Our proposed methodology (PET-MD) helps to remove this effect, retaining the impact of temperature on PET but not on long-term PET change.</p><p>We implemented the PET-MD approach in the global hydrological model WaterGAP2.2d. and computed daily time series of PET between 1981 and 2099 using bias-adjusted climate data of four global climate models for RCP 8.5. We evaluated, computed PET-PT and PET-MD at the grid cell level and globally, comparing also to the results of the Milly-Dunne study. The global analysis suggests that the application of PET-MD reduces the PET change until the end of this century from 3.341 mm/day according to PET-PT to 3.087 mm/day (ensemble mean over the four global climate models).</p><p>Milly, P.C.D., Dunne K.A. (2016). DOI:10.1038/nclimate3046.</p>


2020 ◽  
Vol 24 (6) ◽  
pp. 3251-3269 ◽  
Author(s):  
Chao Gao ◽  
Martijn J. Booij ◽  
Yue-Ping Xu

Abstract. Projections of streamflow, particularly of extreme flows under climate change, are essential for future water resources management and the development of adaptation strategies to floods and droughts. However, these projections are subject to uncertainties originating from different sources. In this study, we explored the possible changes in future streamflow, particularly for high and low flows, under climate change in the Qu River basin, eastern China. ANOVA (analysis of variance) was employed to quantify the contribution of different uncertainty sources from RCPs (representative concentration pathways), GCMs (global climate models) and internal climate variability, using an ensemble of 4 RCP scenarios, 9 GCMs and 1000 simulated realizations of each model–scenario combination by SDRM-MCREM (a stochastic daily rainfall model coupling a Markov chain model with a rainfall event model). The results show that annual mean flow and high flows are projected to increase and that low flows will probably decrease in 2041–2070 (2050s) and 2071–2100 (2080s) relative to the historical period of 1971–2000, suggesting a higher risk of floods and droughts in the future in the Qu River basin, especially for the late 21st century. Uncertainty in mean flows is mostly attributed to GCM uncertainty. For high flows and low flows, internal climate variability and GCM uncertainty are two major uncertainty sources for the 2050s and 2080s, while for the 2080s, the effect of RCP uncertainty becomes more pronounced, particularly for low flows. The findings in this study can help water managers to become more knowledgeable about and get a better understanding of streamflow projections and support decision making regarding adaptations to a changing climate under uncertainty in the Qu River basin.


Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1771 ◽  
Author(s):  
Kun Jia ◽  
Yunfeng Ruan ◽  
Yanzhao Yang ◽  
Chao Zhang

In this study, the performance of 33 Coupled Model Intercomparison Project 5 (CMIP5) global climate models (GCMs) in simulating precipitation over the Tibetan Plateau (TP) was assessed using data from 1961 to 2005 by an improved score-based method, which adopts multiple criteria to achieve a comprehensive evaluation. The future precipitation change was also estimated based on the Delta method by selecting the submultiple model ensemble (SMME) in the near-term (2006–2050) and far future (2051–2095) periods under Representative Concentration Pathways (RCP) scenarios RCP4.5 and RCP8.5. The results showed that most GCMs can reasonably simulate the precipitation pattern of an annual cycle; however, all GCMs overestimated the precipitation over TP, especially in spring and summer. The GCMs generally provide good simulations of the temporal characteristics of precipitation, while they did not perform as well in reproducing its spatial distributions. Different assessment criteria lead to inconsistent results; however, the improved rank score method, which adopts multiple criteria, provided a robust assessment of GCMs performance. The future annual precipitation was projected to increase by ~6% in the near-term with respect to the period 1961–2005, whereas increases of 12.3% and 16.7% are expected in the far future under RCP4.5 and RCP8.5 scenarios, respectively. Similar spatial distributions of future precipitation changes can be seen in the near-term and far future periods under the two scenarios, and indicate that the most predominant increases occurred in the north of TP. The results of this study are expected to provide valuable information on climate change, and for water resources and agricultural management in TP.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3299
Author(s):  
Christina M. Botai ◽  
Joel O. Botai ◽  
Nosipho N. Zwane ◽  
Patrick Hayombe ◽  
Eric K. Wamiti ◽  
...  

This research study evaluated the projected future climate and anticipated impacts on water-linked sectors on the transboundary Limpopo River Basin (LRB) with a focus on South Africa. Streamflow was simulated from two CORDEX-Africa regional climate models (RCMs) forced by the 5th phase of the Coupled Model Inter-Comparison Project (CMIP5) Global Climate Models (GCMs), namely, the CanESM2m and IPSL-CM5A-MR climate models. Three climate projection time intervals were considered spanning from 2006 to 2099 and delineated as follows: current climatology (2006–2035), near future (2036–2065) and end of century future projection (2070–2099). Statistical metrics derived from the projected streamflow were used to assess the impacts of the changing climate on water-linked sectors. These metrics included streamflow trends, low and high flow quantile probabilities, the Standardized Streamflow Index (SSI) trends and the proportion (%) of dry and wet years, as well as drought monitoring indicators. Based on the Mann-Kendall (MK) trend test, the LRB is projected to experience reduced streamflow in both the near and the distant future. The basin is projected to experience frequent dry and wet conditions that can translate to drought and flash floods, respectively. In particular, a high proportion of dry and a few incidences of wet years are expected in the basin in the future. In general, the findings of this research study will inform and enhance climate change adaptation and mitigation policy decisions and implementation thereof, to sustain the livelihoods of vulnerable communities.


Water ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 2130 ◽  
Author(s):  
Zhu ◽  
Zhang ◽  
Wu ◽  
Qi ◽  
Fu ◽  
...  

This paper assesses the uncertainties in the projected future runoff resulting from climate change and downscaling methods in the Biliu River basin (Liaoning province, Northeast China). One widely used hydrological model SWAT, 11 Global Climate Models (GCMs), two statistical downscaling methods, four dynamical downscaling datasets, and two Representative Concentration Pathways (RCP4.5 and RCP8.5) are applied to construct 22 scenarios to project runoff. Hydrology variables in historical and future periods are compared to investigate their variations, and the uncertainties associated with climate change and downscaling methods are also analyzed. The results show that future temperatures will increase under all scenarios and will increase more under RCP8.5 than RCP4.5, while future precipitation will increase under 16 scenarios. Future runoff tends to decrease under 13 out of the 22 scenarios. We also found that the mean runoff changes ranging from −38.38% to 33.98%. Future monthly runoff increases in May, June, September, and October and decreases in all the other months. Different downscaling methods have little impact on the lower envelope of runoff, and they mainly impact the upper envelope of the runoff. The impact of climate change can be regarded as the main source of the runoff uncertainty during the flood period (from May to September), while the impact of downscaling methods can be regarded as the main source during the non-flood season (from October to April). This study separated the uncertainty impact of different factors, and the results could provide very important information for water resource management.


2015 ◽  
Vol 28 (14) ◽  
pp. 5583-5600 ◽  
Author(s):  
Jacob Scheff ◽  
Dargan M. W. Frierson

Abstract The aridity of a terrestrial climate is often quantified using the dimensionless ratio of annual precipitation (P) to annual potential evapotranspiration (PET). In this study, the climatological patterns and greenhouse warming responses of terrestrial P, Penman–Monteith PET, and are compared among 16 modern global climate models. The large-scale climatological values and implied biome types often disagree widely among models, with large systematic differences from observational estimates. In addition, the PET climatologies often differ by several tens of percent when computed using monthly versus 3-hourly inputs. With greenhouse warming, land P does not systematically increase or decrease, except at high latitudes. Therefore, because of moderate, ubiquitous PET increases, decreases (drying) are much more widespread than increases (wetting) in the tropics, subtropics, and midlatitudes in most models, confirming and expanding on earlier findings. The PET increases are also somewhat sensitive to the time resolution of the inputs, although not as systematically as for the PET climatologies. The changes in the balance between P and PET are also quantified using an alternative aridity index, the ratio , which has a one-to-one but nonlinear correspondence with . It is argued that the magnitudes of changes are more uniformly relevant than the magnitudes of changes, which tend to be much higher in wetter regions. The ratio and its changes are also found to be excellent statistical predictors of the land surface evaporative fraction and its changes.


Sign in / Sign up

Export Citation Format

Share Document