Improved dam operation in the Amu Darya river basin including transboundary aspects

Author(s):  
J Froebrich ◽  
O Olsson ◽  
M Bauer ◽  
I Normatov ◽  
G Petrov
2020 ◽  
Vol 36 (2) ◽  
pp. 235-239
Author(s):  
Bakhtiyor Sheraliev ◽  
Sirojiddin Allayarov ◽  
Zuogang Peng

2021 ◽  
Author(s):  
Obaidullah Salehie ◽  
Mohammed Magdy Hamed ◽  
Tarmizi bin Ismail ◽  
Shamsuddin Shahid

Abstract Droughts significantly affect socioeconomic and the environment primarily by decreasing the water availability of a region. This study aims to assess the changes in drought characteristics in Central Asia's transboundary Amu Darya river basin for four shared socioeconomic pathways (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The precipitation, maximum and minimum temperature (Pr, Tmx and Tmn) simulations of 19 global climate models (GCMs) of the coupled model intercomparison project phase 6 (CMIP6) were used to select the best models to prepare the multimodel ensemble (MME). The standard precipitation evapotranspiration index (SPEI) was used to estimate droughts for multiple timescales from Pr and potential evapotranspiration (PET) derived from Tmx and Tmn. The changes in the frequency and spatial distribution of droughts for different severities and timescales were evaluated for the two future periods, 2020–2059 and 2060-2099, compared to the base period of 1975-2014. The study revealed four GCMs, AWI-CM-1-1-MR, CMCC-ESM2, INM-CM4-8 and MPI-ESM1-2-LR, as most suitable for projections of droughts in the study area. The multimodel ensemble (MME) mean of the selected GCMs showed a decrease in Pr by -3 to 12% in the near future and a change in the range of 3 to -9% in the far future in most parts of the basin for different SSPs. The PET showed almost no change in most parts of the basin in the near future and an increase in the range of 10 to 70% in the far future. The change (%) in projected drought occurrence showed to noticeably decrease in the near future, particularly for moderate droughts by up to ≤-50% for SSP5-8.5 and an increase in the far future by up to ≥30% for SSP3-7.0. The increase in all severities of droughts was projected mostly in the center and northwest of the basin. Overall, the results showed a drought shift from the east to the northwest of the basin in the future.


2020 ◽  
Vol 12 (14) ◽  
pp. 2317 ◽  
Author(s):  
Zhibin Liu ◽  
Yue Huang ◽  
Tie Liu ◽  
Junli Li ◽  
Wei Xing ◽  
...  

Human activities are mainly responsible for the Aral Sea crisis, and excessive farmland expansion and unreasonable irrigation regimes are the main manifestations. The conflicting needs of agricultural water consumption and ecological water demand of the Aral Sea are increasingly prominent. However, the quantitative relationship among the water balance elements in the oasis located in the lower reaches of the Amu Darya River Basin and their impact on the retreat of the Aral Sea remain unclear. Therefore, this study focused on the water consumption of the Nukus irrigation area in the delta of the Amu Darya River and analyzed the water balance variations and their impacts on the Aral Sea. The surface energy balance algorithm for land (SEBAL) was employed to retrieve daily and seasonal evapotranspiration (ET) levels from 1992 to 2018, and a water balance equation was established based on the results of a remote sensing evapotranspiration inversion. The results indicated that the actual evapotranspiration (ETa) simulated by the SEBAL model matched the crop evapotranspiration (ETc) calculated by the Penman–Monteith method well, and the correlation coefficients between the two ETa sources were greater than 0.8. The total ETa levels in the growing seasons decreased from 1992 to 2005 and increased from 2005 to 2015, which is consistent with the changes in the cultivated land area and inflows from the Amu Darya River. In 2000, 2005 and 2010, the groundwater recharge volumes into the Aral Sea during the growing season were 6.74×109 m3, 1.56×109 m3 and 8.40×109 m3; respectively; in the dry year of 2012, regional ET exceeded the river inflow, and 2.36×109 m3 of groundwater was extracted to supplement the shortage of irrigation water. There is a significant two-year lag correlation between the groundwater level and the area of the southern Aral Sea. This study can provide useful information for water resources management in the Aral Sea region.


Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3385
Author(s):  
Ye Lyu ◽  
Yue Huang ◽  
Anming Bao ◽  
Ruisen Zhong ◽  
Han Yang

In this study, the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin in Central Asia were selected as typical study areas. Temporal/spatial changes from 2002 to 2016 in the terrestrial water storage (TWS) and the groundwater storage (GWS) were analyzed, based on RL06 Mascon data from the Gravity Recovery and Climate Experiment (GRACE) satellite, and the sum of soil water content, snow water equivalent and canopy water data that were obtained from Global Land Data Assimilation System (GLDAS). Combing meteorological data and land use and cover change (LUCC) data, the joint impact of both human activities and climate change on the terrestrial water storage change (TWSC) and the groundwater storage change (GWSC) was evaluated by statistical analysis. The results revealed three findings: (1) The TWS retrieved by CSR (Center for Space Research) and the JPL (Jet Propulsion Laboratory) showed a decreasing trend in the three basins, and the variation of TWS showed a maximum surplus in spring (March–May) and a maximum deficit in autumn (September–November). (2) The decreasing rates of groundwater storage that were extracted, based on JPL and CSR Mascon data sets, were −2.17 mm/year and −3.90 mm/year, −3.72 mm/year and −4.96 mm/year, −1.74 mm/year and −3.36 mm/year in the Amu Darya river basin, Syr Darya river basin and Balkhash lake basin, respectively. (3) In the Amu Darya river basin, annual precipitation showed a decreasing trend, while the evapotranspiration rate showed an increasing trend due to an increasing temperature, and the TWS decreased from 2002 to 2016 in most areas of the basin. However, in the middle reaches of the Amu Darya river basin, the TWS increased due to the increase in cultivated land area, water income from flooded irrigation, and reservoir impoundment. In the upper reaches of the Syr Darya river basin, the increase in precipitation in alpine areas leads to an increase in glacier and snow meltwater, which is the reason for the increase in the TWS. In the middle and lower reaches of the Syr Darya river basin, the amount of evapotranspiration dissipation exceeds the amount of water replenished by agricultural irrigation, which leads to a decrease in TWS and GWS. The increase in precipitation in the northwest of the Balkhash lake basin, the increase in farmland irrigation water, and the topography (higher in the southeast and lower in the northwest) led to an increase in TWS and GWS in the northwest of the Balkhash lake basin. This study can provide useful information for water resources management in the inland river basins of Central Asia.


Sign in / Sign up

Export Citation Format

Share Document