scholarly journals Influence of Fatigue Loading in Shear Failures of Reinforced Concrete Members without Transverse Reinforcement

2015 ◽  
Vol 13 (5) ◽  
pp. 263-274 ◽  
Author(s):  
Miguel Fernández Ruiz ◽  
Carlos Zanuy ◽  
Francisco Natário ◽  
Juan Manuel Gallego ◽  
Luis Albajar ◽  
...  
2013 ◽  
Vol 12 (1) ◽  
pp. 123-130
Author(s):  
Jacek Korentz

Predicting the behavior of plastic hinges subjected to large inelastic deformations caused by extreme loads such as earthquakes plays an important role in assessing maximum stable deformation capacities of framed concrete structures. This paper presents an analytical procedure for analysing the behaviour of a reinforced concrete section under bending in the post-yield range. The following stages of section behaviour are defined as the uncracked; first cracked; yielding; cover crushing; cover spalling; buckling of bars; and limit stages. The relationship between the moment and curvature in these stages, including the effects of concrete confinement, the spalling of the concrete cover, and the inelastic buckling of the reinforced bars, are considered. The results obtained from analytical calculations have are compared to the results obtained from a computer analysis. The presented method makes it possible to estimate the ductility of reinforced concrete members with various longitudinal and transverse reinforcement.


1983 ◽  
Vol 10 (4) ◽  
pp. 566-581 ◽  
Author(s):  
S. H. Rizkalla ◽  
L. S. Hwang ◽  
M. El Shahawi

Two extensive and independent experimental programs have been conducted to study the cracking behaviour of reinforced concrete members subjected to pure tension in the presence of transverse reinforcement. The first program involved the testing of eighteen reinforced concrete segments and was mainly designed to examine the applicability of the existing equations for predicting crack spacings and widths. The segments were reinforced in two directions and loaded in uniaxial tension beyond the yield stress of the steel. The measured average values of the final crack spacings were compared to the values presented by other researchers. Based on this comparison, a simplified and refined expression for prediction of crack spacing is proposed.The second experimental program involved the testing of sixteen reinforced concrete segments, which were divided into two groups with different concrete covers. Within each group, all segments were identical in all parameters, except the spacing of transverse reinforcement. The program was designed to study the influence of transverse reinforcement spacing on crack behaviour. A methodology including proposed expression for predicting the crack spacing in reinforced concrete members subjected to axial tension with variable transverse reinforcement spacing is presented. Keywords: cracking, crack spacing, crack width, membrane forces, reinforced concrete, tension, transverse reinforcement.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yukui Wang ◽  
Zhefeng Liu ◽  
Weijun Yang ◽  
Jian Wang ◽  
Xiao Zheng

Based on variable amplitude displacement cycle tests of 24 reinforced concrete members with different reinforcement conditions, the stiffness degradation index was proposed to describe the damage. The relationship between the stiffness degradation index, the displacement history, and the cumulative energy dissipation was studied; on this basis, an estimation method for the stiffness degradation index was proposed. By comparing the experimental values and estimated values of the stiffness degradation index, the proposed method provides promising prediction reliability and accuracy. The stiffness degradation index has an effective relationship with the structural design parameters. Based on the stiffness degradation index, the reinforced concrete members can be divided into five performance levels: no damage (DK,k < 0), mild damage (0 < DK,k ≤ 0.3), moderate damage (0.3 < DK,k ≤ 0.7), severe damage (0.7 < DK,k ≤ 0.9), and destruction (0.9 < DK,k ≤ 1), which can provide a good reference for the seismic design of reinforced concrete members. The increase in the transverse reinforcement ratio can significantly reduce the stiffness damage, and the effect is more obvious under the conditions of small ductility. Under the same conditions, the smaller the ductility condition is, the smaller the stiffness damage of the reinforced concrete members will be. Therefore, the control of the ductility condition and the increase in the transverse reinforcement ratio are stable and effective methods for controlling the stiffness damage of reinforced concrete members.


2009 ◽  
Vol 36 (2) ◽  
pp. 171-179 ◽  
Author(s):  
Kamal Jaafar

Common transverse reinforcement of reinforced concrete members with circular cross section consists of round ties or spirals. Its purpose in members that are not subjected to significant shear loading is to provide proper confinement for concrete, and eliminate buckling of the longitudinal reinforcement bars. If spirals are to be used as both a shear resister and confining enabler for reinforced concrete beams, then under combined action of moment and shear, spirals will be required to provide or contribute to proper shear resistance. Hence a proper assessment for spiral shear contribution is required.


Sign in / Sign up

Export Citation Format

Share Document