Impact of a Alveolar Ridge Preservation Technique on the Need of Performing Guided Bone Regeneration for Dental Implant Placement

Author(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Nikolaos Soldatos ◽  
Georgios E. Romanos ◽  
Michelle Michaiel ◽  
Ali Sajadi ◽  
Nikola Angelov ◽  
...  

Background. The placement of an implant in a previously infected site is an important etiologic factor contributing to implant failure. The aim of this case report is to present the management of retrograde peri-implantitis (RPI) in a first maxillary molar site, 2 years after the implant placement. The RPI was treated using an air-abrasive device, Er,Cr:YSGG laser, and guided bone regeneration (GBR). Case Description. A 65-year-old Caucasian male presented with a draining fistula associated with an implant at tooth #3. Tooth #3 revealed periapical radiolucency two years before the implant placement. Tooth #3 was extracted, and a ridge preservation procedure was performed followed by implant rehabilitation. A periapical radiograph (PA) showed lack of bone density around the implant apex. The site was decontaminated with an air-abrasive device and Er,Cr:YSGG laser, and GBR was performed. The patient was seen every two weeks until suture removal, followed by monthly visits for 12 months. The periapical X-rays, from 6 to 13 months postoperatively, showed increased bone density around the implant apex, with no signs of residual clinical or radiographic pathology and probing depths ≤4 mm. Conclusions. The etiology of RPI in this case was the placement of an implant in a previously infected site. The use of an air-abrasive device, Er,Cr:YSGG, and GBR was utilized to treat this case of RPI. The site was monitored for 13 months, and increased radiographic bone density was noted.


2020 ◽  
Vol 99 (4) ◽  
pp. 402-409 ◽  
Author(s):  
G. Avila-Ortiz ◽  
M. Gubler ◽  
M. Romero-Bustillos ◽  
C.L. Nicholas ◽  
M.B. Zimmerman ◽  
...  

Alveolar ridge preservation (ARP) therapy is indicated to attenuate the physiologic resorptive events that occur as a consequence of tooth extraction with the purpose of facilitating tooth replacement therapy. This randomized controlled trial was primarily aimed at testing the efficacy of ARP as compared with unassisted socket healing. A secondary objective was to evaluate the effect that local phenotypic factors play in the volumetric reduction of the alveolar bone. A total of 53 subjects completed the study. Subjects were randomized into either the control group, which involved only tooth extraction (EXT n = 27), or the experimental group, which received ARP using a combination of socket grafting with a particulate bone allograft and socket sealing with a nonabsorbable membrane (dPTFE) following tooth extraction (ARP n = 26). A set of clinical, linear, volumetric, implant-related, and patient-reported outcomes were assessed during a 14-wk healing period. All linear bone assessments (horizontal, midbuccal, and midlingual reduction) revealed that ARP is superior to EXT. Likewise, volumetric bone resorption was significantly higher in the control group (mean ± SD: EXT = −15.83% ± 4.48%, ARP = −8.36% ± 3.81%, P < 0.0001). Linear regression analyses revealed that baseline buccal bone thickness is a strong predictor of alveolar bone resorption in both groups. Interestingly, no significant differences in terms of soft tissue contour change were observed between groups. Additional bone augmentation to facilitate implant placement in a prosthetically acceptable position was deemed necessary in 48.1% of the EXT sites and only 11.5% of the ARP sites ( P < 0.004). Assessment of perceived postoperative discomfort at each follow-up visit revealed a progressive decrease over time, which was comparable between groups. Although some extent of alveolar ridge remodeling occurred in both groups, ARP therapy was superior to EXT as it was more efficacious in the maintenance of alveolar bone and reduced the estimated need for additional bone augmentation at the time of implant placement (ClinicalTrials.gov NCT01794806).


2011 ◽  
Vol 2011 ◽  
pp. 1-5 ◽  
Author(s):  
Mogammad Thabit Peck ◽  
Johan Marnewick ◽  
Lawrence Stephen

In order for a dental implant to be restored optimally, it must be placed in an ideal anatomic position. However, this is not always possible, since physiological wound healing after tooth removal, often results in hard and soft tissue changes which ultimately compromises ideal implant placement. With the aim of minimising the need for tissue augmentation, several alveolar ridge preservation (ARP) techniques have been developed. These often require the use of grafting material and therefore increase the risk of disease transmission. Leukocyte and platelet-rich fibrin (L-PRF) is a newly developed platelet concentrate that is prepared from the patient's own blood. Clinical research has indicated that it improves wound healing and stimulates bone formation. We present a case where L-PRF was successfully used in an ARP procedure to facilitate implant placement in a compromised extraction socket.


2018 ◽  
Vol 45 (4) ◽  
pp. 484-494 ◽  
Author(s):  
Nadja Naenni ◽  
Stefan P. Bienz ◽  
Fernando Muñoz ◽  
Christoph H. F. Hämmerle ◽  
Ronald E. Jung ◽  
...  

2021 ◽  
Vol 5 (3) ◽  
pp. 144-146
Author(s):  
Shamila Shetty K ◽  
◽  
R.K Nishith ◽  
R.K Nishith ◽  
Misha Rose Mathew ◽  
...  

The main biological and biophysical process that has made dental implant therapy predictably successful for replacing missing teeth is Osseointegration. Teeth extraction is done for several purposes, often without any consideration for the preservation of the alveolar ridge. Alveolar bone post-extraction changes have been estimated to cause a 50% decrease in alveolar bone buccolingual width, and a further loss in height. This review will go through various techniques of ARP and bone regeneration techniques and explore the best way to obtain the best outcomes after implant placement.


Sign in / Sign up

Export Citation Format

Share Document