scholarly journals Effect of dual chemically modified on functional properties of white corn starch

2018 ◽  
Vol 2 (1) ◽  
pp. 77-80
Author(s):  
Rijanti Rahaju Maulani ◽  
Asep Hidayat ◽  
Ujang Dinar Husyari

The purpose of the research was to study functional properties of dual-modified two varieties of white corn starch, namely Anoman and Pulut. Modifications of white corn starch used two treatment factors, namely hydroxypropylation reaction at two levels of propylene oxide concentration (8% and 10%) followed by crosslinking reactions on two combinations of STMP phosphate compounds and STPP (ratio 1%:4% and 2%:5%). The results showed that the dual modification can improve the functional properties of white corn starch Anoman dan Pulut variety compared with its native. The dual modified white corn starches of Anoman variety significantly different with Anoman variety on the characteristic of pasting properties, water absorption capacity, swelling volume, clarity of paste, and freeze thaw stability.

2016 ◽  
Vol 5 (5) ◽  
pp. 67
Author(s):  
Victoria G. Aguilar-Raymundo ◽  
Jorge F. Vélez-Ruíz

Considering the nutritional and functional characteristics of chickpea, flours of two varieties of chickpea (“Blanco Noroeste” and “Costa 2004”) were prepared to know the effect of cooking. Thus the objective of this study was to compare their physicochemical and functional properties in both, raw and cooked flours. Physical properties of the grain, for the two varieties were similar, whereas the physicochemical and functional properties of the flours exhibited differences as a function of the variety and the processing. The chickpea cooked flours showed lower lightness and higher redness and yellowness with respect to raw flours. The proximal composition of cooked flours presented significant differences in fat (5.98% - 6.09%) and moisture contents (0.48% - 0.54%) with respect to raw flours. The particle size distribution determined for the raw and cooked flours samples, indicated a unimodal behavior with a wide distribution. The water absorption capacity and oil capacity showed significant difference among flour varieties. For pasting properties, a higher viscosity was measured for Costa 2004 (380 cP) and Blanco Noroeste (272 cP) raw flours, raw flour exhibited better pasting properties than cooked flours. 


2021 ◽  
Vol 14 (2) ◽  
pp. 117
Author(s):  
Edy Subroto ◽  
Rossi Indiarto ◽  
Endah Wulandari ◽  
Astri Puji Astari

<p>Adlay (Coix lacryma-jobi L.) is a potential source of starch but has not been utilized optimally. Native adlay starch has several weaknesses such as functional properties of low swelling volume and solubility, prone to retrogradation, and low stability. Physical modification of ultrasonication and chemical modification by oxidation using ozone can be an alternative to improve the functional properties of adlay starch through the formation of porous starch. The aim of this research was to produce porous adlay starch by ultrasonication and ozonation. The study consisted of several different treatments on hanjeli starch (ozonation starch, ultrasonication of 15 minutes, ultrasonication of 30 minutes, combined ultrasonication of 15 minutes and 30 minutes with ozonation). The results showed the appearance of pores on the surface of the granules of modified adlay starch with the best results being modified combination of ultrasonication 30 minutes and ozonation, which resulted in a decrease in swelling volume from 18.13 ± 3.98 mL/g to 15.71 ± 0.35 mL/g, an increase in solubility from 6.76 ± 0.62% to 9.59 ± 0.44%, and a decrease in water absorption capacity from 1.25 ± 0.02 g/g to 1.13 ± 0.02 g/ g. Modification of adlay starch by ultrasonication, ozonation, and their combination effectively produced porous starch granules, but did not cause the formation of new functional groups in starch.</p>


Fermented Awachy 5 sweet potato flour has the potential to substitute the low protein wheat flour, but this flour has the disadvantage of having a low whiteness degree. The objective of this research was to improve the whiteness degree and the functional properties of naturally fermented of Awachy 5 sweet potato flour using calcium hypochlorite. The research was conducted by the addition of calcium hypochlorite to the fermented sweet potato chips consisted of 5 treatments; namely control (without calcium hypochlorite), 100 ppm, 150 ppm, 200 ppm, and 250 ppm. The results showed that the bleaching treatment using calcium hypochlorite increased the whiteness degree and pasting stability of fermented sweet potato flour. The optimum concentration of calcium hypochlorite was 200 ppm which produced flour with a whiteness degree of 84.60%, ash content of 0.73%, swelling volume of 7.75 mL/g, water absorption capacity of 195.80%, and pasting properties that include of peak viscosity, hold viscosity, breakdown viscosity, setback viscosity, and final viscosity about 2979 cP, 1704 cP, 1275 cP, 1345 cP, 3049 cP, respectively.


2020 ◽  
pp. 41-57
Author(s):  
David T. Ishola ◽  
Mathew K. Bolade

This study evaluated flour blends from Wheat, Pearl millet and Andrographis paniculata leaf for functional properties and pasting characteristics profiling. The functional properties such as solubility, gelling capacity, water absorption capacity (WAC), Oil absorption capacity (OAC), Bulk density, foaming capacity and stability and swelling capacity and the pasting characteristics were studied. The inclusion of A. paniculata leaf flour in the blends revealed a significant general increase in water absorption capacity, oil absorption capacity, swelling capacity, and bulk density. However, a general decrease in the foaming capacity, solubility, and least gelation was observed as the inclusion of A. paniculata leaf flour increased. The pasting properties of WPMF (flour blend without the inclusion of A. paniculata leaf flour) exhibited the following values: peak viscosity (658 RVU), breakdown (372 RVU), final viscosity (923 RVU), setback (637 RVU), peak time (5.07 min), and pasting temperature (84.8oC). The inclusion of A. paniculata leaf flour in the blends led to a significant general decrease in all the pasting factors. The inclusion of A. paniculata had a significant effect on the functional and pasting properties of wheat-pearl millet based flour.


2020 ◽  
Vol 45 (3) ◽  
Author(s):  
K. O. Soetan ◽  
A. A. Adeola

Underutilized and neglected legumes have numerous nutritional potentials with great contributions to food security but they are usually excluded from research and development agenda. This study evaluates the nutritional and functional properties of six different underutilized and neglected legumes; Lima bean (LB) (Phaseolus lunatus) (2006-009), Bambara groundnut (BG) (Vigna subterranea) (TVSU- 1482), winged bean (WB) (Psophocarpus tetragonolobus) (Tpt-48), jack bean (JB) (Canavalia ensiformis) (Tce-4), sword bean (SB) (Canavalia gladiata) (Tcg-4) and African yam bean (AYB) (Sphenostylis stenocarpa) (TSS-95) from the Genetic Resources Unit (GRU), International Institute of Tropical Agriculture (IITA), Ibadan, Oyo State, Nigeria. Nutritional and functional properties were evaluated using proximate composition, mineral analyses and functional properties like bulk density, water absorption capacity, oil absorption capacity, emulsion capacity and dispersibility. All the procedures were carried out using standard protocols. Statistical analysis was done using descriptive statistics. Results of proximate analysis showed that crude protein ranged from18.88 0.15%(WB) to 26.60±0.14%(AYB), crude fat ranged from 1.84 0.02% (JB) to 6.39 0.03% (BG), crude fibre ranged from 3.70 ±0.00% (AYB) to 5.04 0.03% (SB), ash ranged from 3.10 ± 0.14% (AYB) to 4.66 0.02% (LB), nitrogen free extract ranged from 55.60 0.04% (SB) to 62.97 0.12% (WB), moisture content ranged from 5.75 0.48% (AYB) to 10.77 0.03% (JB), dry matter ranged from 89.23 0.03% (JB) to 94.25 ± 0.488% (AYB) and gross energy ranged from 4.39 0.003 kcal/g (SB) to 4.66 0.00 (BG). Mineral content results revealed that calcium varied from 0.14 0.000% (LB) to 0.23 0.0003% (AYB), phosphorus varied from 0.20 0.0001% (AYB) to 0.38 0.00% (BG), sodium varied from 0.12 0.00% (LB and WB) to 0.35 0.0006% (AYB), potassium varied from 0.69 0.00% (LB) to 1.12 0.00% (BG), magnesium varied from 0.15 0.0002% (AYB) to 0.27 0.000% (BG) and iron varied from 44.84 0.03 (mg/g) (WB) to 80.98 0.0007(mg/g) (AYB). Results of functional properties showed that bulk density ranged from 0.45±0.04 g/mL (WB) to 0.77±0.08 g/mL (SB), water absorption capacity ranged from 168.33±0.03 g/100g (LB) to 183.62±0.01 g/100g (SB), oil absorption capacity ranged from 146.54 ±0.02 g/100g (LB) to 161.55±0.02 g/100g (JB), emulsion capacity ranged from 79.67 ±0.02 g/100g (LB) to 89.46±0.02 g/100g (SB) and dispersibility ranged from81.0±1.41%(SB) to 86.5±0.71% (BG). The study concluded that all the underutilized legumes have varying nutritional and functional properties, which should be exploited for nutritional benefits and industrial applications, as a solution to the problem of food shortage, especially in the developing countries.


2019 ◽  
pp. 1-5
Author(s):  
O. I. Ola ◽  
S. O. Opaleye

Bambara nut (Vigna subterrenean) is a cheap source of leguminous protein that can be a good substitute for relatively expensive animal protein to reduce malnutrition. Despite its potentials, it remains underutilized owing in part to long cooking time, presence of antinutritional factors and drudgery in dehulling. In this regard, this study determined effects of fermentation on antinutritional and functional properties of bambara nut flour. Bambara nut was procured from local market in Abeokuta while pure culture of Rhizopus oligosporous was obtained at the Department of Food Science and Engineering, Ladoke Akintola University of Technology. Bambara nut was fermented for 12, 24, 36, 48, 60 and 72h at 32ºC and dried in oven (55ºC/24 h). The antinutritional (tannin, oxalate, phytate, and trypsin inhibitor) and functional properties (water-absorption-capacity, solubility and swelling power) of the composite flour were determined. The data obtained were subjected to descriptive and inferential statistics and significance established at P=.05. Respective range of values for tannin, oxalate, phytate and trypsin inhibitor were 0.08 - 0.32, 0.72 - 1.49, 0.15 - 3.64 and 0.42 - 3.25 mg/g, respectively. Water absorption capacity, solubility and swelling power ranged from 8.67 - 11.04, 52.59 - 53.07, 9.20 - 10.16 and 9.14 9.16%,  respectively. The fermentation process reduced the antinutritional factors and increased the protein content.


2016 ◽  
Vol 12 (2) ◽  
pp. 195-201 ◽  
Author(s):  
Martin A. Mune Mune ◽  
Armand A. Bouba ◽  
Samuel R. Minka

Abstract Functional properties of Bambara bean protein concentrates (BPCs), as a function of extraction pH and NaCl concentration, were investigated. The results showed that protein content of the concentrates ranged between 69.27% and 74.40%. The addition of NaCl during protein extraction favourably affected water solubility index particularly at pH 10–11. Moreover, the maximum water absorption capacity (4.28 g/g) and oil-holding capacity (OHC) (2.50 g/g) were recorded at extraction pH 11 and in the absence of NaCl. It was also noticed that protein extraction at pH 8–10 was not recommended for applications where high OHC is required. BPCs presenting high emulsifying activity were prepared at NaCl concentration of 0.5 M and pH 7, and at pH 11 without NaCl. Finally, foaming ability (FA) increased with NaCl concentration, and the maximum FA was recorded at pH 7 (114%).


Author(s):  
Nikhil D. Solanke Pradeep P. Thorat ◽  
Jayashri Ughade

The purpose of this study is to determine the quality of chickpea and black gram flour used in preparation of traditional products. As the study of physical properties of flour, both chickpea as well as black gram flour shows higher in bulk density. Water absorption index show lower level of both chickpea as well as black gram flour and water solubility index shows both chickpea as well as black gram flour in between bulk density and water absorption index. While the functional properties of flour, water absorption capacity lower for chickpea flour but higher oil absorption capacity. Higher the water absorption capacity for black gram flour and lower the oil absorption capacity for black gram. This concluded that bulk density for both chickpea flour and black gram is highest while oil absorption capacity is lower in both chickpea flour and black gram flours.


2020 ◽  
Vol 39 (01) ◽  
Author(s):  
Anosike Francis Chidi ◽  
Nwagu Kingsley Ekene ◽  
Ekwu Francis ◽  
Nweke Friday Nwalo ◽  
Nwoba Sunday Theophilus ◽  
...  

Studies were conducted on the chemical, functional, pasting properties of the flour blends and sensory properties of ukpo oka formulated from of maize- African yam bean flour (AYBF) in order to improve the nutritional content of maize and encourage a wider utilization of the legume AYB. Supplementation of maize and African yam flour was done at 100:0, 50:50, 80:20, 60:40 and 20:80 maize: African yam bean flour, respectively. Proximate composition, functional properties, pasting properties of the flour blends was determined and sensory attributes of the products were also evaluated. The result showed that supplementation of maize with African yam bean flour significantly increased the protein, ash and fiber content of the flour blends with values ranging from 3.91 - 11.08%, 2.90 - 6.60%, 0.67 - 1.82% for protein, ash and fiber contents respectively. The protein, ash and fiber contents increased with addition of African yam bean flour while carbohydrate content of maize- African yam bean blends decreased with increase in the level of African yam bean. The values for functional properties ranged from 0.72 – 0.82g/ml, 99.33 – 323.33%, 9.01 – 19.65%, 690.00 - 978.33%, 0.67 – 1.13%, 0.484 – 1.038% for bulk density, foaming capacity, emulsion capacity, swelling capacity, water absorption capacity and oil absorption capacity respectively. Values for pasting properties of the flour blends expressed in rapid visco unit (RVU) ranges from 129.25 – 209.40, 22.55 – 67.93, 60.21 – 124.62 , 145.25 – 247.67 , 83.37 – 84.56 , 5.47 – 5.97 and 87.19 – 141.35 for peak viscosity, break down viscosity, set back viscosity, final viscosity, pasting temperature, peak time and trough respectively. Set back viscosity and final viscosity increased with increase in the levels of African yam bean while break down viscosity decrease with the increase in the levels of African yam bean. The products were highly rated in all sensory attributes evaluated however aroma decreases with increase in the levels of AYBF. Product made from flour blend 50:50 was the most preferred in terms of general acceptability.


2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.


Sign in / Sign up

Export Citation Format

Share Document