scholarly journals Chemical, Pasting and Sensory Characteristics of Ukpo oka - A Steamed Maize Pudding Formulated From Maize and African Yam Bean Flour

2020 ◽  
Vol 39 (01) ◽  
Author(s):  
Anosike Francis Chidi ◽  
Nwagu Kingsley Ekene ◽  
Ekwu Francis ◽  
Nweke Friday Nwalo ◽  
Nwoba Sunday Theophilus ◽  
...  

Studies were conducted on the chemical, functional, pasting properties of the flour blends and sensory properties of ukpo oka formulated from of maize- African yam bean flour (AYBF) in order to improve the nutritional content of maize and encourage a wider utilization of the legume AYB. Supplementation of maize and African yam flour was done at 100:0, 50:50, 80:20, 60:40 and 20:80 maize: African yam bean flour, respectively. Proximate composition, functional properties, pasting properties of the flour blends was determined and sensory attributes of the products were also evaluated. The result showed that supplementation of maize with African yam bean flour significantly increased the protein, ash and fiber content of the flour blends with values ranging from 3.91 - 11.08%, 2.90 - 6.60%, 0.67 - 1.82% for protein, ash and fiber contents respectively. The protein, ash and fiber contents increased with addition of African yam bean flour while carbohydrate content of maize- African yam bean blends decreased with increase in the level of African yam bean. The values for functional properties ranged from 0.72 – 0.82g/ml, 99.33 – 323.33%, 9.01 – 19.65%, 690.00 - 978.33%, 0.67 – 1.13%, 0.484 – 1.038% for bulk density, foaming capacity, emulsion capacity, swelling capacity, water absorption capacity and oil absorption capacity respectively. Values for pasting properties of the flour blends expressed in rapid visco unit (RVU) ranges from 129.25 – 209.40, 22.55 – 67.93, 60.21 – 124.62 , 145.25 – 247.67 , 83.37 – 84.56 , 5.47 – 5.97 and 87.19 – 141.35 for peak viscosity, break down viscosity, set back viscosity, final viscosity, pasting temperature, peak time and trough respectively. Set back viscosity and final viscosity increased with increase in the levels of African yam bean while break down viscosity decrease with the increase in the levels of African yam bean. The products were highly rated in all sensory attributes evaluated however aroma decreases with increase in the levels of AYBF. Product made from flour blend 50:50 was the most preferred in terms of general acceptability.

2021 ◽  
pp. 108201322110694
Author(s):  
Ashura Katunzi-Kilewela ◽  
Leonard MP Rweyemamu ◽  
Lilian D Kaale ◽  
Oscar Kibazohi ◽  
Roman M Fortunatus

The study established the proximate composition, pasting, and functional properties of cassava flour (CF) blended with chia seeds flour (CSF). Composite flour was prepared by blending CF with CSF in the ratios of 95:05, 90:10, 85:15, 80:20, and 75:25 with CF and CSF used as controls, respectively. The effect of blending significantly (p < 0.05) increased protein, fat, fibre, and ash contents as CSF increased. On other hand, moisture and carbohydrate contents decreased significantly. Pasting properties of composite flour blends decreased significantly (p < 0.05) as the incorporation of CSF increased and a noticeable change was observed for composite flour (75:25) except for peak time and pasting temperature. Functional properties of water absorption capacity (WAC) of CSF were significantly different with CF and composite flour blends. Oil absorption capacity (OAC) of CF and CSF were significantly different, while the composite flour blends had varied OAC due to the inclusion of the different amounts of CSF. The swelling capacity (SC) of CF and CSF were not significantly different, but composite flour blends were significantly different from both CSF and CF. The least gelation concentration (LGC) and bulk density (BD) increased significantly as chia seeds increased. Increased concentration of chia CSF in the composite flour blends showed to alter the functional properties. This study recommends composite flour 75:25 for processing semiliquid products like porridge due to reduced pasting properties values that may be associated with increased energy density compared to CF.


2019 ◽  
Vol 11 (1) ◽  
pp. 30-36
Author(s):  
Idowu Michael Ayodele ◽  
Adeola Abiodun Aderpju ◽  
Oke Emmanuel Kehinde ◽  
Amusa Ayodeji Joseph ◽  
Omoniyi Saheed Adewale

This study investigated the functional and pasting properties of wheat and tigernut pomace flour blends, as well as the sensory attributes of the meat pie obtained from the composite flour. Tigernut pomace flour was substituted for wheat flour in the amount of 2 –10%. Unsubstituted wheat flour served as the control. The composite blends were analysed for functional and pasting properties. The sensory attributes of the meat pie obtained from the composite flour were also determined. Bulk density, water absorption capacity, swelling power, and the solubility index of the blends ranged from 0.70 -0.75 g/mL, 0.62 -0.96%, 4.06 -4.47 g/g, and 2.45 -13.7% respectively. Peak, trough, breakdown, final, and setback viscosities, peak time, and pasting temperature ranged from 113.6 -135.9 RVU, 76.7 -90.2 RVU, 36.0 -45.8 RVU, 170 -183.7 RVU, 91.0 -93.6 RVU, 5.07 -6.03 min, and 88.4 -90.0 RVU respectively. In terms of appearance, the meat pie samples prepared from tigernut-substituted flour blends did not show significant difference (p &lt; 0.05) from the control sample. The control sample had the highest overall acceptability, although samples from the composite blends were also found to be acceptable. Hence, tigernut pomace flour could be substituted for wheat at the amount of 10% to produce an acceptable meat pie.


Author(s):  
Ghaniyah Odunola Ajibola ◽  
Abiodun Adekunle Olapade

Noodle consumption has been increasing in Nigeria as a result of rapid urbanization, increase in population growth, and desire for convenience food. Noodles are produced from wheat our which is not grown in Nigeria. In order to reduce wheat imports and improve utilization of local crops, various options have been developed to replace wheat flour partially or wholly in noodle production. This study was aimed at optimizing the level of major ingredients to obtain the best flour blend for noodle preparation with optimum nutritional quality. Pro-vitamin A cassava roots (Manihot esculenta Crantz) and African yam bean seeds (AYB) (Sphenostylis stenocarpa) were processed into ours. The ranges of these flours, based on preliminary findings, were computed into a central composite design of Response Surface Methodology (RSM) to obtain 13 flour blends with five central points. The chemical compositions, anti-nutritional factors, and pasting properties of these flour blends were analyzed and measured. By maximizing total β-carotene, protein content, and minimizing fat content, the predicted model indicated the optimum blend of 70.52% cassava flour to 29.48% AYB flour. The best our blend sample of 69.23% cassava our to 30.77% AYB flour gave the actual value of total β-carotene 6.76 μg/g, with proximate analysis composition of protein 6.17%, fat 0.82%, moisture 8.95%, ash 1.77%, crude fiber 5.09%, and carbohydrate 82.30%. The anti-nutritional factors of the best blend were 8.21 mg HCNeqv/kg, 1.69 mg phytate/g and 0.37 mg tannin/g.


2021 ◽  
pp. 45-62
Author(s):  
Joy N. Eke-Ejiofor ◽  
Adelaide E. Ojimadu ◽  
Gabriel O. Wordu ◽  
Chigozie E. Ofoedu

The progress towards exploring the potentials of underutilized indigenous food sources via product development to curb food wastage and agro-food extinction is a way of attaining food nutrition and security within a region. In this context, a comparative study involving some functional properties of complementary food from some underutilized foods (millet, African yam bean, and jackfruit) was carried out. Briefly, millet, African yam bean, and jackfruit were subjected to series of processing treatments such as malting, pre-gelatinization, drying, and milling, followed by blending into various ratios to obtain different samples of composite flours as a complementary food. From these, the functional properties, that is, water absorption capacity (WAC), loose bulk density (LBD), packed bulk density (PBD), foam capacity (FC), swelling index (SI), dispersibility, wettability, and sinkability were determined. Results showed that malting and pre-gelatinization influenced the intrinsic functional properties of the flour blends. In addition, composite flours containing malted samples had significantly lower (p<0.05) dispersibility, SI, WAC, LBD, and PBD, but significantly higher (p<0.05) wettability and sinkability. The variations in flour substitution showed no impact on the flour functionality except for SI and dispersibility. All composite flours exhibited an appreciable level of functionality and suitability to be used as a complementary food for weaning purposes. Overall, this research has demonstrated the potentials of utilizing millet, African yam bean, and jackfruit as sustainable nutrient-dense food materials for the production of complementary food.


Author(s):  
Emmanuel Kehinde Oke ◽  
Michael Ayodele Idowu ◽  
Abiodun Aderoju Adeola ◽  
Temitope Omuwumi Abiola ◽  
Ibrahim Ololade Adeniji

This study was carried out to investigate the effects of wheat flour substitution with tigernut flour. Brown variety of tigernut was sorted and dried in a cabinet dryer at 60°C for 72hrs and was processed into flour and blended with wheat flour at different ratios of 100:0; 90:10; 80:20; 70:30; 60:40; 50:50, 40:60, 30:70, 20:80, 10:90 respectively. The flour blends were analyzed for proximate composition, functional properties, pasting properties and rheological properties (viscosity). Data obtained were subjected to analysis of variance and significant means were separated using Duncan multiple range test. Moisture, crude protein, crude fibre, total ash, crude fat and carbohydrate ranged from 4.11 to 10.35%, 4.72 to 12.28%, 2.82 to 9.81%, 0,51 to 0.78%, 0.84 to 15.61% and 50.26 to 73.25% respectively. Significant differences exist in the functional, pasting properties and viscosity of wheat and tigernut flour blends. As the substitution of tigernut flour increases, the hardness, crust and crumb moisture of the sausage increases during storage. The result of this study shows that tigernut has the advantage of improving the crude fat, total ash and crude fibre of the blends. Substitution of tigernut flour to wheat flour had a significant effect on all the functional properties of the flour blends. The pasting properties of wheat and tigernut flour blends were affected thereby leading to decreases in the peak, trough, breakdown, final viscosity, setback and peak time. The viscosity of wheat and tigernut flour blends is relatively too high and this suggests that the flour blends will be useful in production of baked products.


2021 ◽  
pp. 23-35
Author(s):  
J. N. Okafor ◽  
J. N. Ishiwu ◽  
J. E. Obiegbuna

The aim of this research was to produce acceptable ‘fufu’ from a mixture of sorghum, millet, and African yam bean flours that will have a moderate carbohydrate and protein content with most optimized texture. The functional and sensory properties of flour blends produced from Sorghum, Millet and African yam bean was studied. Sorghum, Millet and African yam bean were processed into flour and mixed at different ratios to obtain composite flours. The flour formulations obtained were analyzed for water absorption capacity, bulk density, least gelation concentration , and viscosity .The  water absorption capacity ranged from 1.00 to 3.00,  the bulk density ranged from 0.56 to 0.82;the least gelation concentration ranged from 5.77 to 6.87,while the viscosity ranged from 0.956 to 9.30.Also proximate composition of the individual flours before formulation  was analyzed, it ranged from 6.13 to 8.46 moisture, 2.00 to 4.67 ash, 0.17 to 8.00 fiber,5.47 to 8.61 fat, 7.57 to 21.84 protein, 58.34 to 69.27 carbohydrate.The sensory values ranged from 5.60 to 6.45 for taste; 4.25 to 6.85  for colour; 5.15 to 6.80 for texture; 3.85 to 5.70 for aroma; 5.45 to 6.45 acceptability. Sample 10 (with the ratio of 40:70:20) had the highest rating for general acceptability. It was observed that sample 1(with the ratio of 60:50:60) had the lowest rating in taste and aroma. The mixture components that could produce optimum texture was determined through optimization plot. This work has demonstrated that acceptable ‘fufu’ with moderate protein and carbohydrate could be successfully produced using composite flours of sorghum, millet and African yam bean.


2020 ◽  
pp. 40-48
Author(s):  
J. A. Ayo ◽  
D. M. Atondo

The functional, sensory and cooking characteristics of noodles from blends of Acha-tigernut composite flour were investigated. The flour blends and noodles produced were analyzed for functional properties and cooking characteristics. The tiger nut flour was substituted into acha flour at 5, 10, 15 and 20% to produce Acha-tigernut composite flour which was used with other ingredients (salt and powdered ginger) to produce acha-tigernut based noodles. The functional properties of the flour, sensory and cooking characteristics of the noodles produced were determined. The water absorption capacity and swelling capacity increased from 210.59 to 215.53 (g/g) and 524.43 to 586.57, respectively with increase in tigernut flour. While oil absorption, solubility and bulk density decreases from 209.80 to 192.72 (g/g), 10.17 to 5.19 and 0.79 to 0.61 (g/ml) respectively. The swelling capacity ranged from 524.43 to 586.57 (%) with an increase in tigernut flour. The final viscosity of the samples was found to range from 2833.00to 2201.00 (m2/s). The peak properties decreased from 2680.67 to 1580.33 (RVU). The pasting temperature increases from 82.47to 87.57°C. The addition of tigernut decreased the trough, breakdown and peak time from 1730.67 to 1205.67, 985.67 to 434.67, and 5.84 to 5.71 RVU, respectively. The average mean scores for colour decreased from 6.95 to -6.30(%) While that of taste, flavor, texture and general acceptability increased from 5.55 to 6.60, 5.95 to 6.85 (%), 5.95 to 6.44 (%) and 6.70 to 6.83 (%), respectively, as the percentage of tigernut increased.


Author(s):  
Florence A. Bello ◽  
Nkpoikana A. Akpaoko ◽  
Victor E. Ntukidem

Nutritive, less bulk and low cost complementary flour blends were produced from maize, carrot and pigeon pea. Five different blends of flour were formulated from maize, carrot and pigeon pea in the ratio of 100:0:0 (A), 90:5:5 (B), 85:5:10 (C), 80:5:15 (D) and 75:5:20 (E) while commercial formula (sample F) served as control. The formulated complementary flour blends were analyzed for their functional properties, proximate, selected mineral and vitamin compositions while the reconstituted samples (gruel) were evaluated for sensory attributes. The functional properties of the complementary flour blends showed less bulk density (0.72-0.76 g/ml) below the commercial formula (1.26 g/ml), low water and oil absorption capacity as well as swelling index. The proximate composition showed significant (p<0.05) increase and ranged from 4.08-4.91% moisture, 6.15-9.48% crude protein, 1.33-1.48% ash, 1.98-2.71% crude fibre, 3.07-4.15% lipid, and 82.93-86.72% carbohydrate. Vitamins A and C were also increased significantly as the levels of substitution increased from 1.80-2.14 µ/100g and 3.21-4.42 µ/100g, respectively. The sensory scores showed that sample A was most preferred followed by sample B in terms of general acceptability.


2018 ◽  
Vol 6 (11) ◽  
pp. 172-183
Author(s):  
Abioye V.F ◽  
Olatunde S.J ◽  
Elias G

Cookies are ready to eat convenient food for all ages and the consumption is on the increase in Nigeria due to urbanization which has led to increase in wheat importation. In order to reduce the effects of wheat importation on the economy, this study looked into the use of locally grown crops for production of cookies. Cookie samples were produced from blends of wheat flour, germinated finger millet and African yam bean. Different proportions of flour blends were obtained using design experts. The flour mixes were evaluated for the proximate, minerals composition, antinutrients and the functional properties while the sensory properties of the cookies were determined. The proximate composition of the composite flour varied from 12.20-12.54; 8.89-10.62; 1.31-1.65; 1.13-1.39; 1.82-1.48 and 74.33-72.66% for moisture, protein, fat, crude fibre, ash and carbohydrate content of the flour, respectively. The mineral content of the flour ranged from 9.064-9.10, 0.29- 0.32, 0.42-0.45, 0.24-0.28% for calcium, phosphorus, potassium and sodium, respectively. The anti-nutritional properties of the flour ranged from 0.0074 to 0.0098%, 0.1700 to 0.1990%, 0.0905 to 0.1080% and 1.2500 to 1.4900%, for tannin, phytate, oxalate and trysin inhibitor, respectively. The functional properties of the composite flour ranged from 0.66-0.67 g/ml; 25.87- 27.48 g/ml; 6.11-8.12 g/ml; 0.75- 0.83 g/ml; 106.65 to 124; 91.70-99.75 g/100g; for bulk density, water absorption capacity, oil water capacity, foaming capacity and foaming solubility, respectively. The sensory attributes studied were colour, taste, texture and crispness. This study has shown that there was a notable improvement on the nutritional and functional properties of the flour while there was reduction in the ant nutrients.


Author(s):  
H. T. Olaleye ◽  
T. O. Oresanya ◽  
E. O. Temituro

Prevalence of Malnutrition continues to be a plague ravaging children all over the world especially in developing countries such as Nigeria. Development of inexpensive, nutritious and readily available foods can mitigate against the challenges of malnutrition. Objective: To investigate the effect of different formulations of sorghum, mung beans and orange fleshed sweet potato flour blends on the proximate, functional, pasting properties and the sensory attributes of the weaning food blends. Methodology: Weaning foods were formulated from Sorghum grains (S), Mung beans (M) and (O) Orange fleshed sweet potato in ratios 40:45:15, 40:30:30, 25:35:45, 25:45:30 and 55:30:15 respectively. The blends of the weaning food were analyzed for the proximate, functional, pasting properties and sensory evaluation using standard methods. Data obtained were subjected to analysis of variance and means were separated using Duncan’s multiple range test p<0.05. Results: The proximate analysis of the blends had moisture content (8.15-9.58%), crude fat (1.47-2.76%), crude protein (14.00-18.04%), crude fibre (0.34-0.82%), total ash (1.86-2.52%) and carbohydrate (68.02-73.62%). Functional analysis: Bulk density 0.55-0.65 (g/cm3), swelling power (4.64-7.13%), solubility index (4.00-16.50%), water absorption capacity 1.58 (g/gcm3). Pasting: Peak viscosity: (87-214), Break-down viscosity (64-142), Trough viscosity (16-72), Final viscosity (50-175), Set back (28-103), Peak time (4.4.6 min), Pasting temperature (70.83°C). Blend S:M:O- 40:30:30 was rated most acceptable for all the parameters accessed. Conclusion: The blends of the weaning food showed that it can be a good source of carbohydrate, crude protein, minerals with low bulkiness and good reconstitution properties which can be used to solve malnutrition challenges in Nigeria.


Sign in / Sign up

Export Citation Format

Share Document