scholarly journals The armoured mite fauna (Acari: Oribatida) from a long-term study in the Scots pine forest of the Northern Vidzeme Biosphere Reserve, Latvia

2014 ◽  
Vol 57 (2) ◽  
pp. 141-149 ◽  
Author(s):  
Uģis Kagainis ◽  
◽  
Voldemārs Spunģis ◽  
Viesturs Melecis
2019 ◽  
Vol 10 ◽  
Author(s):  
Ivano Brunner ◽  
Claude Herzog ◽  
Lucía Galiano ◽  
Arthur Gessler

1984 ◽  
Vol 62 (12) ◽  
pp. 2540-2550 ◽  
Author(s):  
Bjorn Berg ◽  
Gunnar Ekbohm ◽  
Charles McClaugherty

We investigated the relative changes in celluloses and lignin during decomposition of leaf and needle litters and wood in field experiments. The litter came from two different forest systems: one in the United States and one in Sweden. We found that the fraction of holocellulose in the total lignocellulose (Q) during decomposition approached an asymptotic value at which the disappearance of both the chemical components proceeded at the same rate. Different litter types approached different asymptotic values of Q. Possible implications of the finding are discussed.


2022 ◽  
Author(s):  
Arun K. Bose ◽  
Andreas Rigling ◽  
Arthur Gessler ◽  
Frank Hagedorn ◽  
Ivano Brunner ◽  
...  

1982 ◽  
Vol 60 (8) ◽  
pp. 1561-1568 ◽  
Author(s):  
Håkan Staaf ◽  
Björn Berg

Plant nutrient dynamics in decomposing needle litter were measured during a 5-year period in a Scots pine forest in central Sweden. As seen over the whole 5-year period, the nutrients were retained (to a litter weight loss of about 75%) in the order Mn < Ca < K < Mg < S < N < P. During the first 1.5 years there was a net increase of N and P whereafter a net release took place. A similar but less pronounced development could be seen for S, whereas Ca, K, Mn, and Mg were released from the start of the incubation. It is suggested that P was the most limiting element for microbial activity during this first phase. There appeared to be only little initial leaching from the litter and the different behaviours of the elements could largely be explained by their concentration in litter in relation to the needs of microorganisms and to their solubility. K and Mg were the elements that were released at rates most similar to organic matter weight loss.


Forests ◽  
2019 ◽  
Vol 10 (2) ◽  
pp. 141 ◽  
Author(s):  
Gerelbaatar Sukhbaatar ◽  
Baatarbileg Nachin ◽  
Battulga Purevragchaa ◽  
Batsaikhan Ganbaatar ◽  
Khishigjargal Mookhor ◽  
...  

Scots pine (Pinus sylvestris L.) forests are one of the main vegetation types in the Asian forest-steppe zone. However, over-harvesting currently threatens the natural regeneration and sustainability of these forests. In this study, we examine the long-term effects of different logging intensities on soil properties and natural regeneration in a natural Scots pine forest in the West Khentii Mountains (Mongolia), 19 years after selective logging. Our experimental design included five treatments: clear cut (CC), treatments with high (HI), medium (MI), low (LI) intensities, and a reference parcel with no logging impact at all (RE). We described and quantified the harvest events and applied ANOVA and LMM modeling to analyze and explain the long-term impacts of the logging intensities on soil properties and natural regeneration. We found that logging has a significant negative influence on the physical and chemical properties of the soil because it increases soil compaction and reduces soil nutrients. The most critical impacts of logging were on soil bulk density, total porosity, organic matter, and total nitrogen and phosphorus. The LMM modeling showed that organic matter (OgM), total nitrogen (TN), available K (AK) and pH values are especially impacted by logging. Our study revealed that the values for all of these variables show a linear decrease with increasing selective logging intensity and have a level of significance of p < 0.05. Another finding of this study is that selective logging with low and medium intensities can promote natural regeneration of Scots pine to numbers above those of the reference site (RE). High intensity logging and clear-cuts, however, limit the regeneration of Scots pine, reduce overall seedling numbers (p < 0.05), and create conditions that are suitable only for the regeneration of deciduous tree species. This underlines the risk of Scots pine forest degradation, either by replacement by broad-leaf trees or by conversion into non-forest ecosystems.


Sign in / Sign up

Export Citation Format

Share Document